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ABSTRACT

Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate
all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and
answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the
statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list
of the maximum possible number of showers.

Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results,
and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the
ideas of the break-point method.

Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we
separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of
discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers
from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many
showers have been named multiple times with different names.

Conclusions. At present, a prevailing share of existing annual showers can be found in the data and confirmed when we use a
combination of results from large databases. However, to gain a complete list of showers, we need more-complete meteor databases
than the most extensive databases currently are. We also still need a more sophisticated method to separate showers and evaluate their

statistical significance.
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1. Introduction

Meteor showers observed in the Earth’s atmosphere are evidence
that there are streams of meteoroid particles moving in the vicin-
ity of our planet. At present, there is much human activity in
near space. Knowledge of the time of occurrence, the geometry,
as well as the sources of meteoroid particles can help us protect
both people in space stations and equipment such as artificial
satellites from the threat of particles, especially those which are
typically more concentrated in streams than those which are spo-
radic. Prevention, however, can only be reliable if our knowledge
of meteoroids in the Earth’s vicinity is complex, and if we know
in detail all the significant streams.

Programs such as NASA’s Meteoroid Environment Office,
which monitor the flux and the associated risk of meteoroids
impacting spacecraft, require constant improvements to the the-
oretical models for annual meteor showers activity forecasts
(Moorhead et al. 2015). This also demands systematic monitor-
ing of the near-Earth space. There are several surveys, such as
the NASA All Sky Fireball Network (Cooke & Moser 2012),
the Spanish Meteor and Fireball Network (SPMN; Pujols et al.
2013), the All-sky Meteor Orbit System (AMOS; Toth et al.
2015), the Cameras for Allsky Meteor Surveillance (CAMS;

* Tables A.1 and A.2 are also available at the CDS via anonymous
ftp to cdsarc.u-strasbg. fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?]/A+A/598/A40
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Jenniskens et al. 2011), and others, which provide the basis for
the most up-to-date information on the meteoroid environment.

Several lists of meteoroid streams or meteor showers from
the first half of twentieth century have been published. Among
the first are the well-known Cook’s Working List of Me-
teor Streams (Cook 1973) and Kronk’s Descriptive Catalog
of Meteor Showers (Kronk 1988). Searches for meteor show-
ers have been based on various observational techniques: vi-
sual, photographic (e.g., Lindblad 1971; Arlt 1995; Betlem et al.
1998; Ohtsuka & Hidaka 1999), video (e.g., Ueda & Fujiwara
1995; Jopek & Froeschle 1997; de Lignie 1999; Koten et al.
2003), and radio (e.g., Nilsson 1964; Kashcheyev & Lebedinets
1967; Gartrell & Elford 1975; Sekanina 1973, 1976; Galligan &
Baggaley 2002). The vast majority of early major surveys mea-
suring meteoroid orbits (overviews to be found in papers by
Lindblad 1991; Baggaley 1995) were archived in the Meteor
Data Center (MDC) of the International Astronomical Union
(IAU; Lindblad 1987, 1991; Lindblad et al. 2003). Due to an
increase in reports of the detection of meteor showers (com-
piled in Jenniskens 2006), a central repository for the efficient
collection and designation of meteor showers was established
within the TAU MDC (Jenniskens 2008; Jopek & Jenniskens
2011; Jopek & Kanuchova 2014).

The IAU MDC list of showers, with their mean parameters
determined, was considerably expanded by the Canadian Me-
teor Orbit Radar’s (CMOR) contribution. A meteoroid stream
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survey using the CMOR was made by Brown et al. (2008) and
later repeated with an extended collection time and an enhanced
sensitivity of their search for minor showers (Brown et al. 2010).

The next increase in the reporting of meteor showers was
caused by the rapid development of video meteor observations,
producing a massive number of meteoroid orbits and, therefore,
multiplying minor meteor showers identifications (SonotaCo
2009; Jenniskens et al. 2011; Gural et al. 2014; Kornos et al.
2014b; Rudawska & Jenniskens 2014). A list of meteor show-
ers from observations of the International Meteor Organization
(IMO) Video Meteor Network was published by Arlt & Rendtel
(2006, 2007), Molau & Rendtel (2009), and the most recent, up-
dated, comprehensive version by Molau (2014). There are many
reports confirming individual showers or announcing the detec-
tion of a new shower based on observations of national video
systems or networks (e.g., Ueda & Okamoto 2008; Jopek et al.
2010; Holman & Jenniskens 2012; Zoladek & Wisniewski 2012;
Andreic€ et al. 2013; Koukal et al. 2014, gegon et al. 2013). The
most recent series of papers by Jenniskens et al. (2016a,c,b),
based on the CAMS system, provides exhaustive information on
the current status of announced meteor showers. The authors re-
port, in total, 230 meteor showers identified in CAMS data, 177
of them detected in at least two independent surveys. Among
them, 60 are newly identified showers, 28 of which are also de-
tected in the independent SonotaCo survey.

Until now, the official list of showers published by the IAU
MDC! (Jopek & Katiuchovd 2014) has grown to more than
700 meteor showers, 112 of which are established and 37 pro
tempore (version of the lists from February 2016). However,
some of the named showers or published lists of showers were
created on the basis of data from a single observational sta-
tion, which are often biased by observational conditions (local
weather) and, possibly, systematic errors. Many meteor showers
from these lists have not been independently confirmed.

Independent confirmation of a particular stream faces the
problem of the vague nomenclature of meteor showers or
streams established in the past. A new shower is named after
a bright star which is the nearest star to the mean radiant of the
shower. However, as discussed by Jopekz, different authors use
star catalogs with different limiting magnitudes of stars; there-
fore, various “star(s) being nearest to the mean radiant” can be
chosen. Moreover, the positions of a mean radiant as determined
by several different authors often differ from each other; there-
fore, the reference star may be different even if the same star
catalog is used. Sometimes, the mean radiant is situated at the
border of two constellations. One author may determine the ra-
diant in the first, another author in the second constellation. The
name of the shower when referred to by two different authors
then differs completely. It is possible that some showers were
observed by two or more authors and could be regarded as inde-
pendently confirmed, but this fact could escape our attention if
the authors referred the shower by different names.

In our work, we aim to reveal all the meteoroid streams
colliding regularly (every, or almost every, year) with our
planet. For this purpose, we use four accurate and large pho-
tographic and video data sets currently available. Specifically,
we use the compilation of several catalogs of the most accu-
rate meteor orbits gained from the photographic observations of

! https://www.ta3.sk/IAUC22DB/MDC2007/Roje/roje_lista.
php?corobic_roje=0&sort_roje=0

2 Prof. Tadeusz Jopek analyzed the problem of naming a meteor
shower in a working discussion among experts, which he organized at
the Meteoroids 2013 conference in Poznafi.
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meteors, which are collected in the JAU MDC (Lindblad et al.
2003; NesluSan et al. 2014). In addition to the photographic
data, we use the extensive video catalogs, which were
published by the Cameras for All-sky Meteor Surveillance
(CAMS) team (Jenniskens et al. 2011, 2016a), SonotaCo team
(SonotaCo 2009, 2016), and EDMOND team (Kornos et al.
2013; Kornos et al. 2014a).

Rather than recognizing all potential streams in these cata-
logs, we search for the streams that can be well-proven with the
help of the data in a given catalog. As the result, we present the
minimum set of the streams, which very probably exist and orbit
the Sun along trajectories passing in the immediate vicinity of
the Earth’s orbit.

We have attempted to match up all the streams found to the
streams given in the IAU MDC list of all showers. The latter
should solve the problem of the confusing naming of new show-
ers or identification of unknown showers.

2. Procedure of the separation and confirmation
of a shower

In the following, we describe a procedure to find all the annual
meteor showers from the given database of the meteor orbits
which can be proved, using the database, to really exist. The
procedure consisted of two parts: (i) separation of the clusters
of meteors, which are regarded as the candidates for the show-
ers; and (ii) proving the candidates to be or not to be the shower.

To separate the clusters, we have used two methods; the
method of indices (Mol; Svoreii et al. 2000) and the method sug-
gested and described by Rudawska et al. (2015; MoR&, here-
inafter). The two methods are briefly described below.

2.1. Separation of clusters by the method of indices

The procedure was based on dividing the observed ranges of me-
teor parameters into a number of equidistant intervals and the as-
signment of indices to a meteor according to the intervals perti-
nent to its parameters. Meteors with equal indices were regarded
as mutually related. A more detailed description follows:

1. Selection of the Perseids using the break point method
(Neslus$an et al. 1995, 2013), calculation of their mean orbit
and determination of errors (o) of the parameters: g, e, w, Q,
i, a, 6, and V,. The errors were regarded as typical errors of
the listed parameters in the used database. The Perseids were
considered to determine the errors, because they are the most
numerous shower in each database and they are a standard,
sufficiently compact and well-defined shower.

2. Determination of the ranges for the eight parameters in the
whole database. If a meteor, or a few meteors, has a particular
parameter considerably higher, or considerably lower, than
the vast majority of the set, then this value was ignored; a
border of typical values of the vast majority of the meteors
was considered to be the limiting value for the range of that
particular parameter.

3. The whole range of a particular parameter was divided into
a certain number of intervals. The actual range of the ith pa-
rameter is divided into »; intervals, according to the equation
n; = range;/o;/K, where K is a constant that is common
for all parameters, and that is obtained empirically so that,
if possible, all n; (for i = 1, 2, 3, ..., 8) are close to being
integers. The o7 is the error of determination of a particular
parameter in the case of the Perseids (see point 1).
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4. Eight indices that correspond to the eight parameters were
assigned to each meteor. The value of an index of a particular
parameter is the sequential number of the interval matching
the value of the particular parameter of the analyzed meteor.

5. The first meteor of a database, with its set of indices, was
considered; all other meteors, the indices of which are sim-
ilar to the corresponding indices of the first, were searched
for in the database; the meteors found from this search cre-
ated a group. The index is considered to be similar when it
differs by no more than one from the corresponding index of
the first meteor. This tolerance was needed because, in the
case of showers, a distribution of a particular quantity can be
close to the border of two intervals; thus, the values of this
quantity can be found in both of these intervals.

6. Meteors of the selected group were extracted from the
database. The procedure was repeated (as in point 5) with
the remaining data, considering its first meteor, until the re-
maining data equals zero.

7. The mean orbit (MO) of each group was calculated as an
arithmetic average of its individual elements.

8. The MO of the first group was considered and the
Southworth & Hawkins (1963, SH, hereinafter) D-
discriminants between this MO and the MO of each other
group were determined. If D < 0.20, then a particular group
was assigned to the first group; all assigned groups created
a cluster. The assigned groups were extracted from the data
and the procedure was repeated with the remaining groups.

9. The procedure described in point 8 was repeated until the
remaining data equals zero.

10. A mean orbit of each cluster was calculated. A partic-
ular parameter y of a cluster was calculated as y =
Z?zl(anj)/ Z;zl n;, where n is a number of groups assigned
to a particular cluster, Y; is the mean value of the parameter
of jth group and 7 is the number of meteors in the jth group.

11. In the standard Mol, clusters with their mean orbits, were
considered to be candidates for meteor showers in the
database analyzed. Since we also evaluated the statistical sig-
nificance of clustering of the shower meteors in the database
used, we performed one more step: the mean orbit of given
cluster was considered as the initial orbit in the iteration pro-
cedure within the break-point method (see Sect. 2.3) and this
procedure was performed to select a definive set of meteors
of the cluster.

2.2. Separation of clusters by the method of Rudawska et al.

The method was performed in two phases: firstly, searching for a
similarity between the orbits of meteoroids; secondly, measuring
the similarity based on the geocentric parameters.

PHASE 1

1. The first meteor from the whole database (when starting the
process) or from the remnant of the database (when repeating
the process) was considered as a reference meteor. The value
of the D-discriminant of the SH-criterion for orbital similar-
ity between the orbits of the reference meteor and each next
meteor in the database was calculated.

2. Meteors, orbits of which fulfill D < 0.05, were selected from
the database and their initial weighted mean orbit (IWMO)
was calculated.

3. Step 1 was repeated, with the IWMO as the reference meteor.
The D value was calculated for all meteors including the first

meteor (i.e., the D value between the first and IWMO must
also be calculated).

4. Meteors, orbits of which fulfill D < 0.05, were selected from
the database and their new weighted mean orbit (NWMO)
was calculated.

5. The given NWMO was compared using the SH D-
discriminant, with the value of the previous weighted mean
orbit. If the D value between these orbits was found to be
more than or equal to 0.001, then Steps 1 to 5 were repeated
(the IWMO was always replaced by the last NWMO).

6. If the value of the D-discriminant between the last and
the second to last NWMO is less than 0.001, then the
last NWMO was considered as the definitive value of the
weighted mean orbit of the particular group. Meteors that
were used for the calculation of this orbit are extracted from
the database (or from the remainder of the database) and the
new remnant of the database was used to search for the next
groups.

7. Steps 1 to 6 were repeated until the newly-created remnant
equals zero.

PHASE 2

8. The groups were arranged according to the number of mete-
ors they contain, from the most numerous to the least numer-
ous. In the second phase, only groups that consisted of five
or more meteors were considered.

9. The first group was considered as a reference group. The
value of the D-discriminant for orbital similarity suggested
by Rudawska et al. (2015, hereinafter Dgg, discriminant) be-
tween the weighted mean orbit (WMO) of the reference
group and all next groups was calculated. The Dgg, discrimi-
nant was calculated until there was no case with a value equal
to or less than 0.15.

10. Meteors of the first and current group (which implicates the
value of Dgg discriminant <0.15) were considered as mete-
ors of a merged group. A new WMO was calculated using
orbits of all the meteors from the merged group.

11. Steps 9 and 10 were repeated until the last group is reached.
In Step 9, instead of the initial WMO of the first group, the
last calculated WMO of this group was considered.

12. The last calculated WMO of the first group was considered
as the WMO of a “cluster” of the groups.

13. All groups which were merged with the first group in the pre-
vious process (thus, had Dgg discriminant <0.15), were ex-
cluded from the list of groups. Next, we worked only with the
remaining groups, among which the most numerous group
will be regarded as the first group.

14. Steps 9 to 13 are repeated until the list of groups is exhausted.

15. The clusters found represent candidates for meteor showers
in the database.

2.3. On the break-point method

Both Mol and MoR& often produce a set of orbits which are
similar to the initial orbit entering the procedure. Such a set can,
however, be simply a random clustering of the orbits of sporadic
meteors. To prove the existence of a shower, it is necessary to
evaluate the statistical significance of the clustering; if it does
not occur merely by chance.

In the course of proving whether a given cluster is actu-
ally a shower, we analyzed a concentration of cluster meteors in
the appropriate phase space of orbital elements. To demonstrate
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the significance of the concentration, we used the same prin-
ciple as used in the “method of break-point”, suggested by
Neslusan et al. (1995, 2013), to separate the densest part of a
given shower from the database. (This method alone cannot be
used to find the meteor showers in a database since we need an
initial “candidate” orbit to enter the iteration procedure in the
break-point method.) In the subsequent part of this sub-section,
we give a brief reminder of this method.

The break-point is a critical point in the break-point method.
As mentioned above, only meteors of the densest part of the
shower are selected from the database using this method, rather
than all of the meteors of the particular shower.

The method is based on an analysis of the dependence of the
number of the selected meteors of a shower on the limiting value
of the SH D discriminant Dy;,, used for the selection. If a shower
is present in a database, then the dependence N = N(Dyp,) has
convex behavior with a constant or almost constant part — a
plateau. Within the plateau, N does not change with increasing
Dyin, or increases only very slightly. The value Dy, at the point
when the plateau starts is the most suitable limiting value for the
D discriminant for the selection of the densest part of a shower.
Our task is to find the exact position of this threshold, that is, to
find the start of the plateau.

2.4. Description of the search algorithm for the break-point

We assume that we want to perform a selection of meteors of
a particular shower which is indicated by a particular cluster of
meteors found by Mol or MoR&. The selection of meteors from
the database was performed for an ascending series of discrete
values of Dy, generally for Dy, = 0.01, 0.02, 0.03...., up to the
highest value, Dy,. We calculated the SH D-discriminant between
the initial mean orbit (mean orbit of candidate cluster) and orbit
of each meteor in the database. If the resultant D < Dy;,, then the
meteor was selected as the member of a just separated shower.

It is recommended to choose D, = 0.6. For the values
Dy > Dy (see Fig. 1), the number of selected meteors was
non-zero. To find an optimal mean orbit for a particular Dy, the
iteration was used when selecting. If there is another shower in
the vicinity of the phase space of orbital elements of the searched
shower, the iteration may redirect the search to the other shower,
which is often displayed by a decrease in the number N, with
increasing Dyiy,. In such a case, only the non-decreasing part of
the dependence N = N(Dyy,) was analyzed; thus, for Dy, we
consider the last value of Dy, before it starts decreasing.

If the dependence N = N(Dy,) has the expected convex be-
havior, then in its part after point A, a relatively significant in-
crease in the number of selected meteors has to occur. The pro-
posed algorithm searches for the interval of the maximal increase
of the number by calculation of the derivation

AN| _ N(D,) "
AD|y  D,-D,’
beginning with the value of D discriminant D, = D,q =

Dy + 0.04 and finishing with the value D, = Dy = 0.3 (or,
if Dy < 0.3, with the value of D, = Dy, = Dy). If we only sus-
pect there is a shower (hereinafter, such a shower is classified
as a shower of the II class), with a number of meteors less than
ten, then D, = Dy, = 0.2. All these limiting values were cho-
sen empirically, based on the experience that a relatively high
increase in a number of meteors is observed in an interval D,
with the length of 0.04 and if the plateau occurs within the rea-
sonable values of Dy, then the increase stops at the values of
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Diim

Fig. 1. Example of the dependence of the number of selected meteors
of a shower from a database on the limiting value of the Southworth-
Hawkins D discriminant Dy, with an illustration of the three fun-

damental segments of the algorithm of the automated search for the
beginning of the plateau.

Diim less than 0.3, or, in the case of less-numerous showers, at
0.2, respectively.

The derivation AN/AD|4 according to Eq. (1) was calculated
for all the discrete values of Dy, from the mentioned interval
from D4 to D, and the maximum value AN/AD|yax is found.
A maximum increase in the selected meteors N corresponds to
the found maximum; the end of the maximum increase is shown
in Fig. 1 as point B. The corresponding value of Dy;,, will be des-
ignated as Dy and the corresponding number of selected meteors
as Ng. The maximum increase in the dependence N = N(Djy,)
is followed by a moderate increase and, further, by a plateau in
the case of the presence of a meteor shower. In the next step, we
found the end of the plateau, designated as point C in Fig. 1, with
a corresponding D discriminant D¢ and a corresponding number
of selected meteors Nc. The point C was found as follows: start-
ing with the value of the D discriminant D, = D, = Dg + 0.06
and ending with the value D, = D, = Dy, a derivation

AN|  N(D,)-Np @)
ADlg  D,-Dg ’
was calculated for all the discrete values of D, from a given inter-
val, and a minimum of those values will be found. The minimum
value corresponds to the actually searched value of Dc.

In the last step, the beginning of the plateau was found by
calculation of the derivation

AN| _ Nc - N(Dy) 3
AD|c~ Dc-D, )
for all the discrete values from the empirically determined inter-
val, from Dy, = Dg to Dep = Dc — AD. The choice of the value
AD is discussed in the following subsection. The minimum value
of the derivation AN/AD|c, which is designated as AN/AD|uin,
corresponds to the beginning of the plateau, designated as point
P in the figure. This point is the searched break-point, with a cor-
responding critical value of Dy, equal to Dp, and the number of
shower meteors is Np.

There is the theoretical possibility of finding a minimum
value of the derivation given by Eq. (3) in a phase space of the
orbital elements without the presence of any showers. To make
the algorithm work only when the behavior of the dependence
N = N(Dyp) is convex, and to be sure we can speak about a
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plateau, we additionaly require that

AN

<
AD min Q’

“

and we find empirically that Q = 0.4 for showers of class I and
Q = 0.45 for showers of class II (see below). If the condition
is not fulfilled, then the algorithm in the last step fails and the
shower does not exist.

2.5. Evaluation of the reliability of the real occurence
of the selected shower

The above described algorithm finds a break-point and selects
a shower, even in some cases when the reality of the shower is
questionable. Specifically, we presume that a real shower in a
database has to be represented by a minimum of ten meteors;
the plateau should not be too short, otherwise, it may occur only
due to a statistical fluctuation. Therefore, for a highly probable
shower (the reliability class of which we define as class I; see
below), we choose AD, which delimitates the examined interval,
equal to 0.15. This ensures the plateau is within the interval Dy,
with a length of D¢ — Dp > 0.15.

In the dependence N = N(Dyn), a plateau is rarely horizon-
tal. More often, it has a small or greater inclination. We can talk
about a plateau if it is inclined up to a certain maximal accept-
able rate. This rate is, as mentioned in the previous subsection,
set by Eq. (4), with an empirically determined parameter Q. The
equation specifies the ratio between the inclination of the plateau
and the maximal inclination (corresponding to the maximal in-
crease of the N) in the dependence N = N(Djyy,). This ratio is
characterized by the parameter Q.

Overall, if the algorithm successfully finds the values of the
D discriminant Dy, Dg, D¢, and Dp, and the Condition 4 and the
demand of the minimum number of meteor in a shower, Np > 10,
are fulfilled, then, in the particular phase space of the orbital
elements, the shower recorded in the database used exists with a
very high probability. We classified such a shower as a shower
of the reliability class I (or simply showers of class I).

To distinguish whether a shower with assumed character-
istics in the database exists or not is, in practise, difficult, not
only when using this algorithm, but also in general. Therefore,
we found it useful to also select dubious cases, the existence of
which seems to be probable, but which, however, is not provable.
Thus, we established a reliability class II (or, simply, shower of
class II) for showers that probably need some additional exam-
ination. In the case of the showers of the class II, the demand
of the minimum number of meteors in the shower is reduced by
half, Np > 5. Furthermore, the width of the interval Dc — Dp,
which corresponds to the length of the plateau, is only 0.07;
meaning that AD in this case is equal to 0.07.

Mol and/or MoR can also find, in a database, a shower with
Np > 5, which is not proved (as a shower of class I or class II) by
the break-point method, (i.e., by the algorithm described above).
It is thus only a selection of a number of meteors clustered
by chance in the particular phase space of orbital elements. To
distinguish it from an empty phase space, we classified such a
meteor cluster as a “shower” of reliability class III (or, simply,
shower of class III).

Examples of the dependence N = N(Dyyy,) for the showers
of classes I, II, as well as III, are shown in Fig. 2. The examples
roughly indicate the differences between the classes. We hope
they will demonstrate why some separated candidate clusters can
be, and other clusters cannot be, regarded as meteor showers.

An obvious shower of class I are the Geminids, No. 4 in the
TAU MDC list. In Fig. 2a, the shower is separated from the pho-
tographic database by using the Mol. The algorithm used yields
a limiting value of D equal to Dy, = 0.26. However, one could
also consider the value of 0.10. This value, in combination with
the steep increase to the flat plateau, implies a compact, well de-
fined, and, therefore, well-proven shower.

Another example of a shower of class I are the December
Monocerotids, No. 19, separated, again, from the photographic
database by Mol (Fig. 2b). Here, the automatic algorithm yields
a break point corresponding to Dy, = 0.05. We can see that
there is also a second break point at Dy, = 0.22. This point oc-
curs due to the November Orionids, No. 250, which move in or-
bits not very different from those of the December Monocerotids
(Neslusan & Hajdukova 2014, Fig. 6). Considering Dy, = 0.22,
the December Monocerotids and November Orionids would be
separated as a single shower. This is an imperfection of the au-
tomatic algorithm, which, however, concerns only a few show-
ers. In the case of a “double shower”, an individual treatment is
necessary.

The last example we give of a class-I shower is the Octo-
ber Draconids, No. 9, separated from the EDMOND database
by MoR& (Fig. 2c). With respect to the database, the shower is
not very numerous. The plateau in the N = N(Dyy,) dependence
is not very flat, either. In any case, the dependence is clearly dif-
ferent from those for the candidate showers of class III discussed
below.

An example of the shower, which cannot be classified as
that of class I, but class II, because of a steep increase of the
plateau, is shown in Fig. 2d. This shower is the Southern ¢-
Aquariids, No. 5, separated from the CAMS database by the
MoR&. Another shower of class II is the Northern Daytime
w-Cetids, No. 152, separated from the SonotaCo database by
the Mol (Fig. 2e). This shower cannot be classified as a class I
shower because of an insufficient number (less than ten) of sep-
arated meteors. A steep increase in the number of separated me-
teors at Dy, ~ 0.315 and the non-monotonous behavior of the
N = N(Dyin) dependence in the interval of Dy, from 0.37 to 0.40
likely occur due to the presence of another numerous shower in
the near orbital phase space.

The third example of a shower of class II is the y-Eridanids,
No. 378 in the list of all showers, separated from the EDMOND
database by the MoR& (Fig. 2f). The shower cannot be classified
as a class I shower because the plateau in the N = N(Dyp,) de-
pendence is too short. One cannot be sure if the increase yielding
the break point is not just a statistical fluctuation.

Examples of separated clusters which are candidates to be
proven as showers but which are, however, classified as showers
of class III are shown in plots g, h, and i of Fig. 2. In plot g,
there is a cluster separated from the SonotaCo database by the
MoR&. It is the typical — concave — behavior of the N = N(Dyip)
dependence of the sporadic background. The case in plot h is a
separation in an orbital phase with a low number of meteors. The
increase in their number starts at a large value of Dy;y,. Still, only
14 meteors are separated at Dy, = 0.50. This cluster is separated
from the photographic database by the MoR&.

Because of the absence of a plateau, the cluster in the last
example in Fig. 2i must also be classified as class III. A steep
increase in the number of separated meteors at Dy, ~ 0.40 likely
occurs due to the greater density of the sporadic background in
the near orbital phase space. The last cluster is separated from
the EDMOND database by the Mol.
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Fig. 2. Dependence of the number of separated meteors on the threshold value of the Southworth-Hawkins D-discriminant in examples of showers
of class I (plots a)—c)), II (d)—f)), and III (g)—i)). The break point is shown by an empty circle in plots a)—f).

2.6. Identification of proven showers to the real showers
given in the IAU MDC lists of established and all showers

In the past, the name of a newly found meteor shower was de-
rived from the name of a bright star situated in the vicinity of
its mean radiant. Since researchers used different star catalogs
and/or determined a slightly different mean radiant, which was,
however, nearer to another star, the same shower was sometimes
called by different names and this circumstance led to misiden-
tification of the shower later.

In the course of a unique identification of each shower, the
IAU MDC recently provided a list of known meteor showers.
Since many showers were not reliably confirmed, the MDC pro-
vided more than a single list of showers®. Showers confirmed by
several (at least two) authors, which can be regarded as certain,
are given in the list of established showers. The other showers,
together with the established showers, are given in the list of all
showers. Other partial lists are further provided for some spe-
cific purposes. In the following, we consider only the list of all
showers and its subset, the list of the established showers.

In the last step of our search for the showers in a given
database, we try to identify every shower found with its potential
counterpart in the IAU MDC list of all showers. This identifica-
tion is done with the help of the similarity of mean orbits of the
found and MDC-listed showers. The similarity is again evaluated

3 See https://www.ta3.sk/IAUC22DB/MDC2007/
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using the SH D criterion. The showers are regarded as identified
if the value D < 0.25. Of course, in the identification, we are
forced to omit showers without a complete mean orbit from the
list. The results, as well as some complications related to this
identification, are described and discussed in Sect. 3.

3. Solving some problems

It appears that neither the Mol nor the MoR& yields showers
with all shower meteors completely separated from the given
database. After the separation, some “relict” members of the
shower will always remain, which are separated in a further pro-
cessing as another shower or (usually) several showers. Thus,
the result of the separation is often several clusters related to the
same real shower. In Table 1, we illustrate this situation with a
set of clusters, separated by the Mol, which can be identified to
the ¢ Andromedids, No. 411 in the IAU MDC list of established
showers. In this example, two clusters of class I and six clusters
of class II were separated.

In principle, we could alleviate the problem of multi-cluster
separation by enlarging the values of the threshold of the Dsy or
the Dgg discriminant to separate more, and possibly all, mem-
bers of the shower. However, such an enlargement necessarily re-
sults in a relatively large contamination of the separated shower
with the meteors of the sporadic background. In addition, it is
risky that an independent shower of few meteors in the orbital
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Table 1. Mean orbital elements (g, e, w, Q, and i), mean radiant coordinates (« and ¢), and geocentric velocities (V,) of the clusters, separated by
the method of indices from the CAMS database, which belong to the ¢ Andromedids, No. 411 in the AU MDC list of established showers.

No. «cl. q [AU] e[l] wldeg] Q[deg] i[deg] a[deg] o[deg] V,[km s n
777 1 0.69026 0.94133 109.7 1044  113.0 26.4 46.4 57.44 124
677 1 0.69466 0.93635 110.2 105.5 113.0 27.2 46.7 57.40 158
2716 11  0.69466 0.93635 110.2 1055 113.0 27.2 46.7 57.40 158
1002 II  0.69599 0.92837 110.2 1058 1134 27.5 46.6 57.42 189
2738 II  0.69850 0.92415 110.4 105.9 113.8 27.3 46.3 5749 210
751 I 0.69497 0.92573 110.0 1059 1135 27.6 46.5 5740 198
470 1T  0.69497 0.92573 110.0 1059 113.5 27.6 46.5 57.40 198
791 I  0.69533 0.92645 110.1 106.0 113.5 27.7 46.6 5741 197

Notes. No. is the working serial number of cluster, cl. is its class (I or II), and  is the number of meteors in the cluster.

phase space in the vicinity of a larger shower is engulfed by this
larger shower.

In the MoR&, the weights in the new criterion used, D,
of the orbital similarity could be tuned. However, while some
showers are separated in many clusters using this method, a lot
of showers are separated just as a single cluster. In comparison
to the Mol, a smaller number of clusters corresponding to the
IAU MDC showers is separated. Thus, it is again risky to choose
the weights which would reduce the multi-cluster separation be-
cause some of the single-cluster showers could be lost.

To keep the quality of the separation and the determination
of mean characteristics, we prefer to retain the standard values
of the threshold discriminants. Instead, we identify a particular
shower, resulting from the multiple separations, with the cluster
separated for the lowest value of Dy,. (If there are two or more
clusters which have the same lowest Dy;,, the lowest-D);, cluster
with the highest number of separated meteors is identified to the
shower.) Of course, the clusters of class II are ignored if there is
a cluster or clusters of class I.

Furthermore, a given cluster can be identified to more than
a single shower in the IAU MDC list of all showers. Of course,
in reality, no cluster can belong to two or more showers at the
same time. We again use the lowest value of Dgy between the
mean orbit of a cluster and the mean orbit of its counterpart in
the TAU MDC list to make a unique identification. An example
of the multiple identification of a given cluster to six [AU MDC
showers is demonstrated in Table 2.

In more detail, the cluster with the working serial number
1737 separated from the SonotaCo video database is identified
to (i) the established shower a-Capricornids (No. 1 in the TAU
MDC list); (ii) candidate showers August v-Aquariids (No. 467),
X2-Capricornids (No. 623), and e-Aquariids (No. 692); and
(iii) to two showers, August S-Capricornids (No. 471) and Au-
gust 6-Aquilids (No. 472), which are among the “to be removed
showers” in the IAU MDC list. In the last column of Table 2, we
give the value of the Dgy discriminant between the mean orbit
of cluster No. 1737 and the mean orbit of a given shower by the
various authors. We can see that the values are lower than 0.1
and, thus, the mean orbits are extremely similar for more than a
single shower. Again, we use the lowest value of Dgy to make
a unique identification of a particular cluster to the IAU MDC
shower. More detailed information about the multiple identifica-
tions is presented in Sect. 4.

4. Results — shower statistics

The lists of showers separated and confirmed from all four
databases considered used by the Mol and MoR& are given in

Table A.1 and A.2, respectively. Each shower is introduced by its
number in the [AU MDC list of all showers (Jopek & Kariuchova
2014) or by a lower-case roman number if the separated shower
is not identified to any IAU MDC shower (the first column of
tables).

The names of the non-identified showers are given in
Table A.3. Some of these showers found by the Mol correspond
to the showers found by the MoR&. The correspondence is given
in Table A.3: the shower of given name is numbered as in the first
(Mol number) as the second (MoR&) column.

As mentioned in Sect. 3, many showers found and confirmed
in this work are identified to more than a single shower in the
IAU MDC list of all showers. The complete lists of these multi-
ple identifications are presented in Table A.4, for the found and
confirmed showers by the Mol, and in Table A.5, for those by
the MoR&. There are 81 (77) multiple identifications when the
candidate showers are selected by the Mol (MoR&). Prevailing
part of this relatively large number of similar showers can be ex-
plained by the confusing naming of the showers, when various
authors refer to the shower by different names (the problem men-
tioned by Jopek; see Sect. 1). Because of this multiplicity, which
is not real for the actual showers, we give only a single shower
of the multiple identified set in Tables A.1 and A.2.

In some cases, the twice-identified showers are still real. For
example, comet 1P/Halley approaches the Earth’s orbit in both
pre-perihelion and post-perihelion arcs of its orbit and, hence, it
produces two real showers, Orionids and r-Aquariids, with al-
most the same mean orbit. We devoted extra attention to search
for pairs of this kind among the related showers. Using the Mol,
we found three such the pairs: Nos. 8 and 31, 206 and 561, and
335 and 520. When using the MoR&, two single real pairs were
found: 8 and 31 and 11 and 626. The relationship between show-
ers Nos. 11 and 626 is, however, uncertain because the stream
has a very low inclination to the ecliptic (3° to 5.5°), which ca-
suses a large uncertainity in the position of radiant, especially
for the shower No. 11, n-Virginids. In the case of real pairs, both
showers are listed in Table A.1 and A.2.

Another case of real showers found among the related pairs
is that of the December Monocerotids and November Orionids,
Nos. 19 and 250, which, however, do not originate from the same
parent body (NesluSan & Hajdukova 2014). To recognize pairs
of this kind requires special treatment of the related showers. In
Tables A.1 and A.2, we give both 19 and 250 showers, but other
pairs are not recognized in our work.

Statistics of the numbers of showers found and confirmed in
the individual databases as well as those found and confirmed
in at least one database is presented in Table 3 (Table 4) when
the Mol (MoR&) was used. Specifically, we present the partial
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Table 2. Mean solar longitude (1), mean orbital elements (g, e, w, , and i), mean radiant coordinates (e and ¢), and geocentric velocity (V) of
an example cluster, separated by the method of indices from the SonotaCo database (the first line of the table), and corresponding mean orbital
elements of the showers in the IAU MDC list, to which the cluster is identified (from the second to last line).

No. Ap[deg] ¢[AU] e[l] wldeg] Ql[deg] ildeg] aldeg] oldeg] V,[km s71] n D;
S1737  127.711 0.597 0.759 267.4 127.7 7.4 306.2 -8.8 22.18 483
1 128.900 0.602 1.000 266.7 128.9 7.7 306.6 -8.2 22.20 36 0.241
1 122300 0.550 0.768 273.3 122.3 7.7 306.7 -9.3 2340 269 0.050
1 123.800 0.594 1.000 267.6 123.8 7.2 3034 -10.6 22.20 - 0.247
1 129.000 0.590 0.770 269.0 127.7 7.0 308.4 -9.6 22.80 21 0.027
1 127900 0.586 0.770 268.4 127.9 7.4 307.1 -8.9 22.60 22 0.023
1 123.500 0.586 0.750 269.2 123.3 7.3 302.9 -9.9 2220 145 0.038
1 126.100 0.586 0.770 268.4 127.9 7.4 305.7 -94 2240 122 0.023
1 127.000 0.578 0.774 268.9 125.4 7.5 306.5 -9.2 23.00 646 0.027
467 139.400 0.618 0.781 263.6 139.4 2.6 317.1  -13.1 21.80 13 0.140
467 139.500 0.612 0.752 265.6 139.5 2.6 318.1 -12.2 21.35 23 0.158
471 137.800 0.752 0.676 248.9 137.8 34 3063 —-12.5 16.95 9 0.217
472 147.300  0.790 0.648 243.5 147.3 7.4 310.6 -1.8 15.90 7 0.233
472 143.800  0.742 0.735 248.3 143.8 8.8 310.3 -1.8 18.66 10 0.159
623 120.000 0.509 0.786 2774 119.7 7.6 3039 -10.8 24.50 86 0.098
692 138.000 0.685 0.729 256.9 138.7 7.4 310.5 -5.8 1990 23 0.096

Notes. No. is the serial number of the cluster (first line) or the number of the shower in the IAU MDC list (the second to last lines). n is the number
of meteors in the cluster and D; is the Dsy value giving the similarity of orbits of both cluster and real shower. In the IAU MDC list, there are
several orbits of given shower, determined by various authors. When identifying, we consider all these orbits.

Table 3. Various numbers of showers found and confirmed in the pho-
tographic IAU MDC (F), CAMS video IAU MDC (C), SonotaCo video
(S), EDMOND video (E), and at least one of these databases.

Row F C S E At least one
I o0 1 o0 I 1o I I 1 11

1 10 3 26 26 32 25 24 32 47 60

2 10 3 26 13 31 14 24 20 46 24

3 10 1 24 7 25 10 22 10 38 9
4 o 0 0 13 1 11 0 12 1 36

Notes. The Mol was used to find the candidate showers. The numbers
in the individual rows of the table are explained in the text of Sect. 4.

numbers of the showers of class I (2nd, 4th, 6th, 8th and column)
and class II (3rd, 5th, 7th, and 9th column) separated from each
of the four databases used, as well as the numbers of showers
of class I (10th column) and class II (11th column) separated
from at least one of the four databases. In the individual rows,
the following numbers are presented:

(1) the total number of the showers;

(2) the number of the showers identified to the showers in the
IAU MDC list of all showers;

(3) the number of the showers identified to the showers in the
TIAU MDC list of established showers;

(4) the number of the showers, which were not identified to any
IAU MDC shower (some of these showers may not be newly
discovered showers; it is possible that they have already been
found by other authors, but are not included in any of the IAU
MDC lists).

5. Discussion

Using the Mol, we separated 70 showers which are in the
IAU MDC list of all showers and 37 other showers. The anal-
ogous numbers are 49 and 84, respectively, when the MoR&
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Table 4. Same characteristics as in Table 3.

Row F C S E At least one
I O I IO I I I I I II

1 11 11 13 51 15 32 16 28 21 112
2 11 10 11 16 15 9 15 6 18 31
3 11 6 10 10 15 4 15 1 24 9
4 0O 1 235 023 1 22 3 81

Notes. MoR& was used to find the candidate showers.

is used. This documents a different efficiency of the separation
of candidate clusters by the methods considered. The showers,
which are not present in the IAU MDC list, are almost all of
class II, regardless of the method. More than twice the number
of these showers are separated by the MoR& in comparison to
the Mol. The former method is clearly more capable of separat-
ing some diffuse showers and meteor associations.

All large, compact, well-known showers such as the Per-
seids, Geminids, Orionids and n-Aquariids, Leonids, Southern
0-Aquariids, April Lyrids, Daytime Arietids, a-Capricornids,
and October Draconids were separated by both methods, Mol
and MoR&. Of the largely dispersed Taurids, the Northern Tau-
rids were not separated by any method and the Southern Taurids
were separated only by the MoR& as a class I shower.

In the case of smaller showers, the methods of separation and
proof of the meteor showers are, unfortunately, imperfect. Using
the same set of meteor-orbit data, the identical list of showers
should be separated and proved using any method. However, our
result appears to be dependent on the method used. There are
32 showers found and classified as those of class I (numbers: 21,
40, 164, 175, 191, 208, 261, 327, 331, 333, 335, 336, 343, 348,
372,392,411, 426, 428, 452, 456, 462, 499, 500, 507, 513, 520,
522, 548, 703, 738, 772) by the Mol, that are not found, even
as showers of class II, by the MoR&. And vice versa, there are
five showers (numbers: 184, 347, 479, 667, 718) separated with
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MoR& and classified as those of class I, which are not detected
by the Mol.

Using the Mol, 54 (34, 15) showers of class I were separated
from at least two (three, all four) databases. The analogous num-
bers in the case of the class-II showers are 4, 2, and 0. Using
the MoR&, 22 (22, 16) showers of class I were separated from
at least two (three, all four) databases. The analogous numbers
in the case of the class-II showers are 14, 3, and 0. The above
mentioned numbers document that the databases used, although
they are relatively extensive, still do not contain the sufficient
data about all regular showers.

Both methods of separation used, Mol and MoR&, are pri-
marily based on the mean orbital characteristics of meteors.
The position of radiant and geocentric velocity are less im-
portant. This difference between our methods and those based
exclusively on the geophysical or observational characteristics
actually has an impact on distiguishing between the showers
which seem to be identical by their observational characteris-
tics, but have different mean orbits. An example is the pair of
clusters with the first member separated from the photographic
and the second member from the SonotaCo video databases by
the Mol. Their right ascension and declination of radiant and
geocentric velocity are 101.8°, 27.3°, 69.61 kms~! and 101.0°,
26.2°, 69.67kms™!, respectively. With respect to these values,
the clusters would be regarded as related to the same shower.
However, the mean perihelion distance, eccentricity, and espe-
cially the argument of perihelion are 0.942 au, 0.881, 186.9° and
0.797 au, 0.975, 233.3°, respectively. The differences are signifi-
cant enough to regard these clusters as two independent showers.

The numbers of separated and confirmed showers in this
work, 107 by the Mol and 133 by the MoR&, are similar to those
separated by Brown et al. (2010) (109) using the seven-year sur-
vey of the Canadian Meteor Orbit Radar or by Kronk (1988)
(112) or to the 112 showers in the IAU MDC list of established
showers (Jopek & Kanluchova 2014). Our numbers are smaller
than, for example, the 275 showers identified by Sekanina (1976)
in the database of 19 698 radio meteors he used or the 296 show-
ers found by Rudawska et al. (2015) in the collection of the ED-
MOND database from the period 2001 to 2014, or the 230 me-
teor showers found by Jenniskens et al. (2016a) searching the
CAMS database of about 110000 meteoroid orbits. Our num-
bers are also considerably smaller than the number of showers
(707) in the considered IAU MDC list of all showers. This is ob-
viously a consequence of the elimination of multiple accounting
of a given shower with several names, and due to a reduction in
the number of candidate clusters evaluated using the statistical
significance of the shower in the given data. In fact, we obtained
a much larger number of candidate clusters using both methods
than were confirmed as showers, regardless of whether we used
the Mol or the MoR&. Specifically, using the Mol, we separated
17, 2639, 2798, and 1805 candidate clusters of class III in the
IAU MDC photographic, IAU MDC CAMS video, SonotaCo
video, and EDMOND video databases respectively. Using the
MoR&, the analogous numbers of candidate clusters of class III
were 62, 4997, 7407, and 4351, respectively.

6. Concluding remarks

The data to reliably determine the mean characteristics of an-
nual showers appears to be still insufficient. This can be deduced
from the fact that some showers found and well evidenced in one
database are not present, often even not as showers of class II, in
other databases. All showers of class I should be easily separable
as showers of this class in every database. However, only major

showers like the Perseids, Geminids, Orionids, Southern Delta
Aquariids, Leonids, Quadrantids, or October Draconids are rep-
resented with a large enough number of meteors.

Not only the databases but the methods of separation and the
proof of the meteor showers are, unfortunately, imperfect. Us-
ing the same set of meteor-orbit data, an identical list of showers
should be separated and proved using any method. However, our
result appears to be dependent on the method used. 32 showers,
which have been found and classified as those of class I by the
Mol, are not found, even as showers of class II, by the MoR&.
And vice versa, there are five showers separated with the help of
MoR& and classified as those of class I, which are not detected
by the Mol. Certainly, further progress in the theory of separa-
tion and proving the shower is strongly desirable.

Despite the problems outlined, we can see a certain conver-
gence of the data in various data sets. A quite large number
of showers can be found and proved in two, three, or all four
databases considered. Thus, our knowledge of the meteoroid
streams crossing the orbit of the Earth is becoming more and
more complete. A good and detailed knowledge of meteoroid
streams and their structure allows a reliable search for their par-
ent bodies — a search for the sources of most meteoroid particles.

As mentioned in the Introduction, the cosmic space around
our planet is increasingly populated by artificial satellites im-
proving our everyday life. Furthermore, it is a place of human-
bearing space stations and, we can expect, will in the future
contain the stations of space colonists. The meteoroid particles
reduce the functionality of the stations and satellites and also
threaten the people staying in the cosmos. A good knowledge of
the sources of meteoroid streams is the first, necessary condition
in an action to remove these sources from the orbits, in which
they produce the particles and larger boulders into the space in
the Earth’s vicinity. In this sense, the observations and theoret-
ical studies of meteoroid streams have also a potential practical
application.
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Table A.3. Names of the showers not identified to any shower in the
IAU MDC list of all showers.

Mol-No. MoR&-No.

Name of shower

i

ii

iii

iv

v

vi

vii
viii
X

X

X1

xii
xiii
X1V
XV
XVvi
XVii
Xviii
XiX
XX
xXxi
XXii
Xxiii
XXiv
XXV
XXVi
XXVvil
XXViii
XXIX
XXX
XXXI1
Xxxii
XXX1ii
XXXIV
XXXV
XXXVi
XXX Vil

i

Xxiii

XXViii
XX Vil
XXXl

XXXV

xIvi
xlvii

1
xlix

li

lvii
Ixii

Ixiii
Ixxiv

ii
iii
iv

%
vi

vii
viii
ix

X

X1
xii
Xiii
Xiv
XV
XVi

zeta Pegasids

41 Ophiuchids
alpha Sagittids

nu Serpentids
gamma Cygnids
omega Aquariids
37 Cetids

delta Andromedids
14 Triangulids

eta Perseids

pi Perseids

gamma Perseids

11 Camelopardalids
3 Camelopardalids
iota Camelopardalids
beta Cetids

tau7 Eridanids
theta Ursa Maiorids
delta Lepids

40 Perseids

gamma Coma Berenicids
kappa Columbids
alpha Coma Berenicids
alpha Craterids

tau Orionids

24 Canes Venaticids
epsilon Aurigids
kappa Ursa Maiorids
13 Monocerotids
40 Leonids

tau Serpentids

31 Lynxids

epsilon Librids

nu Virginids

10 Serpentids

mu Ophiuchids

60 Herculids
gamma Ophiuchids
45 Herculids

tau Pegasids

beta Sagittids
epsilon Equuletids
zeta Aquariids

pi Aquariids

beta Ophiuchids
iota Herculids

82 Piscids

psi Andromedids
omicronl Cygnids
alpha Equuletids

pi Andromedids

chi Cetids

Notes. Mol-No. (MoR&-No.) is the serial number assigned to the
shower in this work when the shower was separated using the Mol
(MoR&). Mol-Nos. (MoR&-Nos.) correspond to those given in the sec-

ond part of Table A.1 (Table A.2).

Table A.3. continued.

Mol-No. MoR&-No.

Name of shower

xvii
Xviii
XiX
XX
xXxi
XXii
XX1V
XXV
XXVi
XXIX
XXX
XXX1
Xxxii
XXXIV
XXXVi
XXXVil
XXXViil
XXX1X
x1

xli
xlii
xliii
xliv
xlv
x1Iviii
lii

liii

liv

lv

Ivi
Iviii
lix

Ix

Ixi
Ixiv
Ixv
Ixvi
Ixvii
Ixviii
Ixix
Ixx
Ixxi
Ixxii
Ixxiii
Ixxv
Ixxvi
Ixxvii
Ixxviii
Ixxix
Ixxx
Ixxxi
Ixxxii
Ixxxiii
Ixxxiv

psi Aquariids

xi Pegasids

nu Perseids

tau2 Aquariids

64 Piscids

20 Eridanids

chi Piscids

14 Arietids

21 Lynxids

7 Camelopardalids
mu Cassiopeids

74 Orionids

taud Eridanids

30 Taurids

chi Aurigids
omicron Perseids
iota Perseids

pi Cepheids

tau2 Eridanids

59 Virginids

65 Andromedids
54 Perseids

pi Geminids
epsilon Sextantids
beta Leonids

37 Leonis Minorids
delta Virginids
beta Corvids

44 Hydrids

7 Coma Berenicids
zeta Virginids
alpha Canis Minorids
beta Equuletids

tau Virginids

chi Ursa Maiorids
theta Herculids
omicron Bootids

6 Bootids

beta Bootids
lambda Serpentids
71 Ophiuchids
delta Ophiuchids
xi Bootids

69 Virginids

36 Coma Berenicids
alpha Ophiuchids
delta Scutids

24 Ophiuchids

tau Corona Borealids
47 Hydrids

5 Serpentids

13 Bootids

sigma Aqulids

iota Corona Borealids
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Table A.4. Identification of the showers in the IAU MDC list of all
showers to the showers found and confirmed, using the Mol, in the pho-
tographical (F), CAMS-video (C), SonotaCo-video (S), and EDMOND-
video (E) databases.

No. e Database Related Rel. class
1 e CS,E 115,467,471, ILII
472, 475, 623
692
4 ¢ FC,S,E 390, 641 ILII
5 e FC,S,E 505, 640 LII
6 e FEC,S,E LII
7 e FC,S,E L1II
8 ¢ FC,S,E 31,226,243 LII
9 e E 220 LI
10 e F,C,S,E 1
11 e 1
12 e S,E 197, 220, 413, IL1II
463, 464, 470
703, 793
13 e FC,S,E I 1I
15 e CSE IL1II
16 ¢ FC,S,E LII
19 e FC,S,E 250 L1I
20 e C,S,E 32,499 I 1I
21 e S 343, 426, 452 LII
22 e C,S,E 230 IL1II
23 e F 533 II
26 ¢ F,C,S,E 508 LII
31 e FC,S,E 8,226,243 IL1I
32 — C,S,E 20,499 L1II
40 - C,S,E 348 LII
110 e CE 11
115 — C,S 1,467,471, ILII
472, 475, 623
692
145 ¢ C,S,E II
164 ¢ C,S,E 327,548 ILII
171 ¢ C,S,E 680 IL1II
175 ¢ C,S,E 462,522 L II
191 ¢ C,S,E 738 ILII
197 e S,E 12,220, 413, IL1I
463, 464, 470,
703
206 e E II
207 — S II
208 e S,E II
212 e S I
220 — S,E 9, 12,197, L1II
413, 463, 464,
470, 703
221 e S,E 325,772 I
224 — F 1I
226 — E C,S,E 8, 31,243 LII
230 - C,S,E 22 LI
243 — F C,S 8,31, 226 LII

s >

Notes. “No.” is the number of the shower in the IAU MDC list and “e”
marks the established shower. There often occur multiple identifications
of several IAU MDC showers to a single shower found in this work.
The designation numbers of the IAU MDC showers related to the given
TIAU MDC shower (with the designation number in the first column) are
presented in the 4th column. The reliability class of the found showers
is given in the last column.
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Table A.4. continued.

No. e Database Related Rel. class
250 e FC,S,E 19 LII
261 — S 456 LI
319 e C,S,E L1II
320 e C,S 330 LI
323 e G S LI
324 e C,E II
325 e S,E 221,772 I
327 e C 164,548 I
330 e C,S 320 LII
331 e C,S,E LI
333 e S,E LI
334 e S 392 II
335 ¢ C,S,E 520 LI
336 e S,E 392 LII
341 e C S L1II
343 e S 21,426,452 LI
348 e C,E 40 LII
362 e C,S,E 394,398 LII
372 e C LI
390 e F,C,S,E 4,641 LI
392 — S,E 334,336 LII
394 - C,S,E 362,398 L1II
398 — C 362,394 II
411 e C,E 507 LII
413 — E 12,197, 220, LI
463, 464, 470,
703
426 — S 21, 343,452 LI
428 ¢ C,S,E 500,513,514 LII
450 - C S ILII
452 — S 21, 343, 426 LI
456 — S 261 LII
462 — C,S,E 175,522 LII
463 — E 12,197, 220, LI
413, 464, 470,
703
464 — S,E 12,197, 220, LI
413, 463, 470,
703
467 — C,S,E 1,115,471, LI
472, 475, 623,
692
470 — S,E 12,197, 220, LI
413, 463, 464,
703
471 — C,S,E 1,115,467, LI
472, 475, 623,
692
472 — C,S,E 1,115,467, LI
471, 475, 623,
692
475 — S,E 1,115, 467, LI
471, 472, 623,
692
492 — E 561 II
497 — E 11
499 - C,S,E 20,32 LI
500 — C,S,E 428,513,514 LI
505 — F E 5,640 I




L. Neslusan and M. Hajdukov4, Jr.: Separation and confirmation of showers
Table A.4. continued. Table A.5. Identification of the showers in the IAU MDC list of all
showers to the showers found and confirmed, using the MoR&, in
the photographical (F), CAMS-video (C), SonotaCo-video (S), and

No. e Database Related Rel. class EDMOND-video (E) databases.
507 - C,E 411 L II
508 — FEC,S,E 26 LI No. e Database Related Rel. class
513 - C,S,E 428,500,514 I 1I
514 — E 428, 500, 513 II 1 e C,S,E 115,467,471, LI
517 — S,E L1I 472, 475, 623,
520 - C,S,E 335 I 1I 692
522 - C,S,E 175,462 I, 1I 2 e C 17,25, 173, II
533 e F 23 II 486, 625, 626,
548 - C,S,E 164,327 I 1I 628, 629, 630,
551 - F II 631, 632, 633,
561 — E 492 II 634, 635, 637
563 — E II 4 ¢ FC,S,E 390, 641 I
569 e S II 5 e FC,S,E 505, 640 LI
606 — C 621 II 6 e FC S, E 581 LI
621 — C 606 II 7 e FECS,E LI
623 — C,S,E 1,115,467, I 1I 8 e EC,S,E 31,226, 243, LI
471, 472, 475, 479, 667,718
692 9 e E 220 LI
640 — F,C,S,E 5,505 I1I 10 e EC,S,E LI
641 — F, C,S,E 4,390 I 1I 11 e F II
680 - C,S,E 171 I, 1I 12 e F S 184,197,413 LI
692 - C,S,E 1,115,467, I, 1I 463, 464, 470
471, 472, 475, 13 e F |
623 15 e EC,S,E I 1T
694 — C,S,E 695 II 16 e FS,E LI
695 — C 694 II 17 e C 2,25,173, LI
703 — E 12,197, 220, I1I 486, 625, 626,
413, 463, 464, 628, 629, 630,
470 631, 632, 633,
705 - E II 634, 635, 637
708 — C I 19 e EC,S,E 250 LI
720 - C,S,E II 20 e F 32 II
727 — E II 22 e F, S 230 L1
738 - C,S 191 LI 25 - C 2,17, 173, II
746 — E II 486, 625, 626,
752 — S 11 628, 629, 630,
772 — S 221,325 I 631, 632, 633,
634, 635, 637
26 e F 508 I
31 e FC,S,E 8,226,243, I, 11,
479, 667,718
32 - F 20 II
49 — S 651 II
110 e CE LI
115 - C,S,E 1,467,471 II
472, 475, 623
692
151 e C 356 II
152 e S II
165 e C II
171 e C,S,E 680 I
173 e C 2,17,25, II
486, 625, 626, II
628, 629, 630, II
631, 632, 633, II
634, 635, 637 II
184 e E S 12,197,413, L 1T
463, 464, 470
197 e F S 12,184,413, II

Notes. This table has the same structure as Table A.4.
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Table A.5. continued. Table A.5. continued.

No. e Database Related Rel. class No. e Database Related Rel. class
463, 464, 470 545 — F 580 II
212 e S 1 571 - C II
220 - E 9 I 1I 580 — F 545 II
221 e E 325 I 581 — C,S 6 11
224 — F II 623 - C,S,E 1,115,467, LII
226 ¢ F C,S,E 8,31, 243, IL1I 471, 472, 475,
479, 667, 718 692
230 — F S 22 LII 625 — C 2,17,25, II
243 — F, C,S,E 8,31, 226, LI 173, 486, 626,
479, 667, 718 628, 629, 630,
250 e EC,S,E 19 LII 631, 632, 633,
252 e C I 634, 635, 637
319 e C I 626 — C 2,17, 25, 11
320 e C,S 330 1I 173, 486, 625,
323 e C I 628, 629, 630,
324 ¢ CE LI 631, 632, 633,
325 e E 221 1 634, 635, 637
330 e C,S 320 1I 628 — C 2,17, 25, II
341 ¢ C,S,E IL1II 173, 486, 625,
347 — C 1 626, 629, 630,
349 — C 771,779 1I 631, 632, 633,
356 — C 151 II 634, 635, 637
361 — S,E 766 11 629 — C 2,17, 25, 11
362 e E 394 II 173, 486, 625,
378 — E II 626, 628, 630,
390 ¢ F,C,S,E 4,641 1 631, 632, 633,
394 — E 362 II 634, 635, 637
413 — F S 12,184, 197, II 630 — C 2,17,25, II
463, 464, 470 173, 486, 625,
450 — C II 626, 628, 629,
463 — F S 12,184, 197, II 631, 632, 633,
413, 464, 470 634, 635, 637
464 — F, S 12,184,197, II 631 — C 2,17, 25, 11
413, 463, 470 173, 486, 625,
467 — C,S,E 1,115,471, LII 626, 628, 629,
472, 475, 623 630, 632, 633,
692 634, 635, 637
470 — F S 12,184, 197, 1I 632 — C 2,17, 25, 11
413, 463, 464 173, 486, 625,
471 — C,S,E 1,115,467, LII 626, 628, 629,
472, 475, 623 630, 631, 633,
692 634, 635, 637
472 — C,S,E 1,115,467, LII 633 — C 2,17, 25, II
471, 475, 623 173, 486, 625,
692 626, 628, 629,
475 — C,S,E 1,115,467, II 630, 631, 632,
471, 472, 623 634, 635, 637
692 634 — C 2,17, 25, 11
479 — F C,S,E 8,31, 226, LI 173, 486, 625,
243,667, 718 626, 628, 629,
486 2,17, 25, II 630, 631, 632,
173, 625, 626, 633, 635, 637
628, 629, 630, 635 2,17, 25,
631, 632, 633, 173, 486, 625,
634, 635, 637 626, 628, 629,
505 — 5, 640 L1I 630, 631, 632,
508 22 I 633, 634, 637
517 - II 637 2,17, 25, II
537 717 II 173, 486, 625,
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L. Neslusan and M. Hajdukov4, Jr.: Separation and confirmation of showers

No. e Database Related Rel. class
626, 628, 629,
630, 631, 632,
633, 634, 635
640 F,C,S,E 5,505 L 1II
641 F,C,S,E 4,390
651 S 49 11
667 F,C,S,E 8, 31,226, L1II
243,479, 718
680 C S,E 171 I
692 C,S,E 1,115,467, L II
471, 472, 475,
623
717 F 537 II
718 F, C,S,E 8,31, 226, 1
243, 479, 667
720 C S,E II
746 E 11
766 S,E 361 1I
777 C 349,779 II
779 C 349,777 1I
792 E 1I
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