Abstract: The “Meteor Shower Database” created using data from the SonotaCo network was revised (Koseki, 2021) and expanded using the Global Meteor Network (GMN) data.  The number of meteors used by GMN (Global Meteor Network) was 760874, significantly increasing from the previous 2007–2018 SonotaCo net’s 284273 meteors.  Furthermore, the number of meteor showers detected increased from 82 to 118 since observations of the southern sky were now included.  The summarized data is shown in Table 7.

 

1 Introduction

About three years ago, we published “Meteor Shower Database” using data from the SonotaCo network (Koseki, 2021). Since then, the GMN has become more active, including in the Southern Hemisphere, and meanwhile more than a million meteor orbits have been accumulated (Vida et al., 2019, 2020; 2021). This time, we decided to use GMN’s data until February 2023 (downloaded 2023–02–25, at 00h35m46.416729s UTC) to revise and expand the previously announced “Meteor Shower Database”.

This paper consists of three parts: I. Research methods and survey results, II. Meteor showers that need to be examined carefully, and III. Radiant point distribution map and activity profile. In this Part I, the radiant point, geocentric velocity, and orbital elements at the maximum are shown in Table 7. In Part II, we explained meteor showers that may cause misunderstandings when consulted only in Parts I and III, focusing on those that are confusing in IAUMDCSD. Part III will also touch on the differences in the “definitions of meteor showers” between SonotaCo net and GMN .

We published in eMeteorNews a 10-level rating for every entry listed in IAUMDCSD (March 29, 20h00m00s UTC, 2023 revised edition), and we will focus on those with a rating of 8 or higher. Basically, the average DR is 5 or more and the maximum number of meteors per day is 10 or more. We also considered some of the interesting activities that were below 7. The survey items are the same as last time, but the survey procedure will be explained using the Orionids as an example.

2 Research methods

2.1 Select data that appears to be representative for the IAUMDCSD list

If the described data are in good agreement, such as the Orionids, use the first report.
0008ORI00: λʘ = 208.7°, λ –λʘ = 246.56°, β = –7.45°
If there are discrepancies in the data listed, we use the best 10-level rating created earlier.

2.2 If the position of the radiant point (λ – λʘ, β) does not change with the solar longitude, we will create a temporary radiant point distribution and activity graph

Figure 1 (left) and Figure 2 (left) show the radiant point distribution and activity graph using the original data as is. If the radiant point distribution is expressed in equatorial coordinates (α, δ), the drift of the radiant points becomes large, making it difficult to approximate the spherical coordinates of the celestial sphere with a straight line on a plane. By using (λ – λʘ, β) coordinates, the amount of movement is small, and a reasonable linear approximation is possible. The radiant point distribution shown here is based on data with an initial value of Δλʘ = 10°, that is λʘ = 198.7°~218.7°.

Figure 1 – The left side is the original data, and the right side is the one with the radiant point movement taken into account.

 

Figure 2 – The left side assumes that the radiant point is fixed in ecliptic coordinates, and the right side assumes that the radiant point moves.

 

Figure 3 – Changes in the x-coordinate of the radiant point depending on the solar ecliptic longitude. The left is the original data, and the right is the converged state of the regression analysis.

 

2.3 For the activity period estimated from the activity graph, we use a regression analysis to find changes in the position of the radiant point (λ – λʘ, β) and the geocentric velocity with the solar ecliptic longitude

Judging from the activity graph, Δλʘ = 10°, which we used as the initial value, is appropriate, so we perform a regression analysis for observations in this range.  We use data within 3 degrees from the center and ±3 (km/s) from the regression line of the geocentric velocity.

The distribution before the analysis is cut off at the top and bottom because the radius of the radiant point is set to 3 degrees and does not include the entire movement of the radiant point (Figure 3, left).  After several operations, the regression line converges to a constant value (Figure 3, right).

Figure 4 – The total number of radiant points within 10 degrees from the center against the ratio of the number of radiant points to each distance (left). The change in radiant density with the distance in steps of 0.1 degrees (right).

 

Figure 5 – Activity curve by year. On the left is the change in the number of meteors determined to be part of the Orionid group. The image on the right is corrected by DR.

 

2.4 A radiant point distribution map and activity profile are created based on the determined radiant shift

Figures 1 and 2 (both right) show the recalculations of the radiant distribution and activity curve using the estimates of radiant movement obtained by regression analysis, respectively.  The radiant distribution is almost circular, and the so-called “tail of the Orionis” is clearly visible.  Furthermore, as shown in Figure 4 (left), 80% of the radiant points of the Orionids are included within 3.0 degrees, and 90% when included up to 5.6 degrees.  This shows the validity of considering radiant points within 3 degrees from the center to belong to a meteor shower.

Figure 4 (right) shows the change in radiant point density with distance from the center, and the change is almost exponential.  The structure of radiant points is actually complex, and it is best not simply expressed as an exponential function, but by expressing it in the form of N = a*rb, it is possible to give a certain index of the density and spread of the radiant point distribution; when r is the distance from the radiant, a and b can be indicators of the density of the radiant at the center and how the radiant spreads, respectively.

Although the activity curves in Figure 2 are similar, it is possible to trace activity even outside the survey period λʘ =198.7°~218.7°, and the values for DR and Nr <= 3 are increasing.  It is necessary to consider which of the activity curves in Figure 2 (right) best represents the activity.  Two conditions need to be taken into consideration: one is that if the number of meteors is used as is, it will be affected by observation conditions (weather, etc.), and the other is that even if DR is used to alleviate the influence of observation conditions, it will be affected by the influence of the nearby activity of meteor showers.

Figure 5 (left) gives the activity profile based on the number of meteors expressed as a moving mean of 0.1 degrees in
1-degree width in solar longitude.  Figure 5 indicates the cause of the problem in which Nr <= 3 (the number of Orionid meteors), Figure 2 shows two maxima.  Figure 5 (left) shows that the observations of 2022 dominate the average value among GMN observations.  We should be careful that the content of this paper is dominated by the 2022 observations (or 2023 if there are 2023 observations) because the number of GMN observations is increasing exponentially.  Observations of the Orionids in 2022 show two maxima in Figure 5 (left), but a single maximum in DR15 in Figure 5 (right).  This suggests that the influential Western observations of GMN were obstructed for some reason (probably the weather), and it shows that the two maxima were spurious.

If the number of meteors itself is used carelessly in this way, it will lead to incorrect conclusions, so it is necessary to use DR correction together.  However, as mentioned earlier, DRs are affected by surrounding meteor activity.  Figure 6 shows the change in the number of radiant points within a 0.1-degree wide ring depending on the distance from the center, considering the radiant shift.  The number of radiant points of the Orionids decreases when moving away from the center but starts to increase again from around 6 degrees. This is a natural increase due to an increase in the surface of the 0.1-degree wide ring.  The slight increase around 15 degrees is due to the EGE meteor shower, and the increase after 45 degrees is due to the STA and NTA radiants.  The activity of the Orionids is very strong and is not affected by EGE much, but it is a point that should be taken into consideration when obtaining the activity profile of the weak meteor shower.  In the case of the Orionids, it is clear from Figure 2 (right) that DR3_6 is inappropriate, and DR3_10 would be better to avoid the impact of EGE.  The area of the ring used for DR calculation increases as the distance from the center increases, and therefore the number of radiant points also increases.  If the surrounding meteor activity level is low, the larger the number of meteors, the smaller the variation in DR.  In such a case, DR3_20 is the most appropriate.

Figure 6 – The change in the number of radiant points every 0.1 degree depends on the distance from the center considering the movement of the radiant point.

 

Regardless of whether Nr <= 3 or DR is taken, the activity profile obtained is not smooth because the activity of the meteor shower cannot be constant from year to year, and the observation conditions vary.  A simplified model of the structure of meteoroid streams is used to estimate the average activity curve.

The model A: The direction of the perihelion and the size of the orbit are assumed to be constant, the orbital plane of the meteoroid stream rotates around the direction of the perihelion, and the eccentricity changes, so the meteor shower activity can be seen at different solar longitudes.

The rotation model: The size and shape of the orbit (eccentricity) are assumed to be constant, and the orbital plane of the meteor stream rotates along the ecliptic plane (the ecliptic latitude of the perihelion is constant), so the meteor shower is active even at different solar longitudes.

We apply the D-criterion, which is often used to determine the attribution of meteor showers, to these two models.  The Southworth-Hawkins D-criterion (1963) is expressed in the following form:

D^2 = (ΔS) ^2 + (ΔV)^2 + (ΔP) ^2 + (θ)^2

Where:

  • ΔS is the difference in orbit shape;
  • ΔV is the difference in orbit size;
  • ΔP is the difference in perihelion direction;
  • θ is the intersection angle of mutual orbital planes.

For the A model, the second and third terms are considered constant, so the first and fourth terms are used, and for the rotation model, the first and second terms are considered constant, so the third and fourth terms are used.  The coefficient of each term is 1 in the D-criterion, but here we assign coefficients C1 and C2 to the terms used, respectively.  Also, in the D-criterion, the power of each term is fixed at 2, but the power C3 is added to the entire sum of two terms.  By adjusting the coefficients and powers, almost the same activity profiles for the A model and the Rotation model can be obtained for the Orionids (Figure 7).  Table 1 shows the coefficients used in the estimated profiles shown in Figure 7 for the Orionids.  It should be noted that since model A and the rotation model use different terms, it is meaningless to compare C1 and C2 between them.

Figure 7 – The Orionid group activity curve according to the different model estimates.

 

Table 1 – Coefficients used to represent the estimated profile in Figure 7.

C1 C2 C3 λʘ Max
A 37 37 1.3 209.5 320
Rotation 10 10 1.3 209.5 320

 

2.5 Estimation of the radiant point and orbit calculation

It is easy to convert the movement of the radiant point in (x, y) coordinates to (λ – λʘ, β) and then to (α, δ) coordinates, and when combined with the estimated value of the geocentric velocity, orbit changes can also be estimated.  Coordinate transformation and orbit calculation methods are also extensively described elsewhere, so they will be omitted here.  Changes in the radiant point, geocentric velocity, and orbital elements of the Orionids are shown in Table 2.

Table 2 – The radiant point, geocentric velocity, and orbital elements of the Orionids.

λʘ λ–λʘ β α δ vg e q i ω Ω λπ βπ a
190 251.3 –8.8 81.2 14.3 66.9 0.91 0.703 162.6 67.9 10 303 16.1 7.8
191 251.1 –8.8 81.9 14.4 66.9 0.909 0.696 162.7 68.8 11 303.1 16.1 7.69
Omitted
205 247.7 –7.8 92.7 15.6 65.9 0.913 0.591 163.6 81.5 25 303.8 16.3 6.76
206 247.4 –7.8 93.5 15.6 65.8 0.913 0.583 163.6 82.4 26 303.9 16.2 6.73
207 247.2 –7.7 94.3 15.7 65.7 0.914 0.576 163.7 83.3 27 304 16.2 6.7
208 246.9 –7.6 95.1 15.7 65.7 0.915 0.568 163.7 84.1 28 304.1 16.2 6.68
209 246.7 –7.6 95.9 15.7 65.6 0.916 0.561 163.8 85 29 304.2 16.1 6.66
210 246.5 –7.5 96.6 15.8 65.5 0.917 0.553 163.9 85.9 30 304.3 16.1 6.64
211 246.2 –7.4 97.4 15.8 65.4 0.918 0.546 163.9 86.7 31 304.4 16 6.63
212 246 –7.4 98.2 15.8 65.4 0.919 0.539 164 87.6 32 304.5 16 6.62
213 245.7 –7.3 99 15.9 65.3 0.92 0.531 164.1 88.4 33 304.7 15.9 6.61
214 245.5 –7.2 99.8 15.9 65.2 0.921 0.524 164.1 89.2 34 304.8 15.9 6.6
Omitted
229 241.8 –6.2 111.5 15.7 64.2 0.94 0.417 165.2 101.2 49 307.4 14.5 6.93
230 241.6 –6.1 112.3 15.7 64.1 0.941 0.41 165.3 102 50 307.6 14.4 6.98

 

 

It is noteworthy that the perihelion direction (λπ, βπ) and the semimajor axis a of the Orionids remain almost constant.  There are many cases where the perihelion direction and semi-major axis of the orbit change significantly.

In Section 2, we have shown the coordinates of the center used in calculations and the change of the radiant point in (x, y) coordinates and the geocentric velocity, so we will only show the radiant point and trajectory at the estimated maximum.

2.6 Investigation of nearby activities

Figure 8 shows the meteor showers listed in the IAUMDSD under the same conditions as Figure 1 (right).  The red squares are registered as the Orionids and are well concentrated in the center.  Among minor meteor showers, even those registered in the IAUMDCSD vary greatly, often in a confusing way.  Crosses indicate that other names have been given in IAUMDCSD.

Table 3 – Meteor showers recorded in the IAUMDCSD in the same area as Figure 1 (right).

Code λʘ λ–λʘ b vg x y
0718XGM00 206 250.9 –10.6 68.1 –3.37 –2.81
1198XRO00 207.1 245.7 –7.7 50.3 1.47 –0.04
0008ORI03 207.5 247.1 –7.9 66.4 –0.01 –0.18
0008ORI04 207.9 247.5 –7.8 66.2 –0.48 –0.19
0008ORI05 208 247.4 –8.1 65.4 –0.42 –0.5
0008ORI01 208.6 246.6 –7.4 66.2 0.15 0.16
0008ORI00 208.7 246.6 –7.5 66.5 0.21 0.15
0008ORI06 209 246.7 –7.6 66.3 –0.03 –0.04
0008ORI02 209.8 246.3 –7.2 66.4 0.2 0.31

 

1198XRO is located within 3 degrees from the center (xy) = (1.47, –0.04).  Since it was 15km/s slower than the Orionids, vg = 50.3, it was probably considered as a different activity.  The existence of separate groups has been argued because of the difference in geocentric velocity between the main activity, but neither has been confirmed.  This will probably be the same case here.  0718XGM is a member of the so-called “tail of the Orionids” and careful discussion will be necessary as to whether they should be recognized as an independent meteor showers.

 

Figure 8 – Meteor showers listed in the IAUMDSD.

 

3  Summary of survey results

Tables 4 to 7 summarize the results for the 118 meteor showers investigated.

Table 4 gives the data that served as the starting point for the survey and the changes in the radiant point and geocentric velocity depending on the solar longitude.  If you have these numbers and the original GMN data, you can reproduce the numbers from Table 5 onwards.  Code represents the IAU numeral code + IAU 3 letter code + AdNo.  The reason why Table 4 is not in the order of solar longitude is that it has been adjusted to the order of maximum solar longitude determined by the modeling shown in Table 7λʘ, λ–λʘ and β are the values for radiant points listed in the IAUMDCSD, and the following investigation is conducted using these as the starting point.  However, if they are not suitable as the origin, it will be changed and indicated in italics.  Dr and ʘ are the scope of attribution judgment and investigation period  The movement of the radiant point is approximated by a straight line on a coordinate system centered on this origin, with the direction in which the ecliptic longitude decreases along the ecliptic latitude line as the positive x-axis and the direction in which the ecliptic latitude increases along the ecliptic longitude line as the positive y-axis. Then, xa, xb, ya, and yb are the coefficients and constant terms of the approximate straight line.  Similarly, va and vb are coefficients and constant terms that are linear approximations of the geocentric velocity.  Please refer to the previous section for the specific examples of the Orionids, including the items in the table below.

Table 4 – Radiation points as the starting point of the survey, survey period, and the change in radiant point and geocentric velocity obtained by regression analysis.

Code Origin Radiant shift
λʘ λ–λʘ b Dr ʘ xa xb ya yb va vb
0647BCO00 13.3 175.25 29.14 3 10 0.1114 –0.889 0.3953 –4.1319 –0.0341 27.0738
0040ZCY01 16 300.11 59.08 3 5 –0.0665 0.8988 –0.1696 2.6972 0.0498 42.6984
0841DHE00 19.5 232.08 46.26 3 5 –0.0808 1.6894 –0.1706 3.5906 0.0659 47.9721
0450AED00 20.2 292.83 29.85 3 5 –0.0907 1.5561 0.2029 –3.853 –0.0931 62.4424
0839PSR00 25.1 211.69 34.29 3 5 –0.3084 7.875 –0.2934 7.6928 0.4016 35.135
0021AVB06 27.6 170.32 12.03 3 10 0.4675 –12.7715 0.2377 –6.2633 –0.1712 23.9921
0040ZCY02 32 299.63 57.79 3 5 0.6056 –18.7925 0.1266 –3.6641 –0.2587 49.9125
0006LYR00 32.2 241.39 56.72 3 5 –0.3003 10.0005 –0.3615 11.6821 0.2763 37.6836
0343HVI07 39.2 166.63 –1.2 3 5 0.6749 –25.9303 –0.1702 6.4895 –0.2917 29.7599
0348ARC01 42 311.73 56.56 3 5 –0.6159 23.8141 0.0831 –3.3468 –0.2936 52.9007
0519BAQ00 46.3 278.91 13.47 3 5 0.0807 –3.973 –0.006 0.0891 –0.0807 71.8886
0031ETA07 47 293.28 7.68 3 10 0.2451 –11.5905 0.055 –2.4999 0.0423 63.5525
0531GAQ01 49.8 262.44 32.44 3 5 –0.1847 8.8321 –0.0961 5.4252 0.0751 58.38
0854PCY00 53.8 276.79 71.98 3 10 0.2031 –10.4586 –0.0431 1.6777 0.0308 37.8613
0145ELY02 50 256.73 63.97 3 5 0.3748 –18.641 0.0156 –0.2332 0.025 42.6992
0520MBC00 56.8 244.94 4.28 3 10 0.2167 –12.7955 –0.036 2.5228 –0.0625 69.136
0061TAH 68 125 32 3 3 0.5295 –37.0384 5.4157 –371.208 0.326 –11.2406
0860PAN00 71.6 307.92 43.24 2 3 0.275 –19.1996 0.3804 –27.0442 –0.1867 63.8194
0362JMC01 71 324.61 43.4 3 10 –0.1635 12.5697 0.3048 –21.7102 –0.1378 52.6056
0171ARI03 77 331.58 7.34 3 10 0.3638 –27.9298 –0.0141 1.5546 0.0781 34.5427
0458JEC00 82.3 248.13 47.78 3 3 –0.4362 35.3057 –0.2748 22.7932 0.1986 36.3117
0510JRC00 84 262.78 54.43 3 3 0.0372 –2.7745 –0.162 14.5395 0.0859 42.5144
0069SSG03 90 185.16 –4.67 3 10 0.4559 –41.1943 0.0322 –4.6239 –0.1244 36.0361
0170JBO07 89.64 102.98 59.03 3 3 1.3028 –116.749 0.2386 –21.1976 0.1806 –2.3079
0410DPI00 92 280.17 0.75 3 5 0.2026 –18.6893 –0.0231 2.4041 –0.0906 78.0196
0459JEO01 89 155.38 12.42 3 5 0.8038 –71.308 0.3671 –33.0682 –0.1571 28.1574
0431JIP00 94.456 252.88 37.39 3 3 –0.9655 91.2422 –0.5911 56.0458 –0.1943 76.8147
0867FPE00 96.7 254.6 16.38 3 3 0.155 –15.1602 0.8084 –77.8719 –0.4798 112.6566
0372PPS_0 95 283.28 15.27 3 5 0.1076 –10.275 0.1131 –10.3518 0.01 65.3255
0164NZC03 101 209.69 12.71 3 15 0.108 –10.6845 0.0367 –3.9905 –0.1068 49.682
0370MIC00 100 209.87 –12.2 3 10 0.1416 –13.3029 –0.0707 9.0276 –0.1032 50.488
1133TCS00 105.1 303.93 52.75 3 5 –0.1759 18.5893 0.1755 –18.4183 –0.1716 64.2561
0411CAN00 105 298.06 33 3 10 –0.052 5.3959 0.0934 –10.0424 –0.1091 68.5495
0175JPE02 110.9 244.09 14.49 3 10 0.1214 –13.7635 –0.1099 12.1921 –0.0364 67.7813
0444ZCS00 113.2 277.79 42.82 3 3 –0.3796 43.0291 –0.3564 40.3444 0.1145 44.1326
0533JXA00 119 282.02 –4.77 3 10 0.2315 –27.8444 0.012 –2.1535 0.0638 61.4211
0623XCS00 115 185 8 1.5 5 0.2066 –24.1731 0.025 –2.5507 –0.0952 36.1377
0372PPS_1 120 278.96 15.98 3 5 0.2976 –36.4379 –0.4713 57.1145 0.1406 49.5335
0184GDR00 125.3 167.84 73.73 3 3 0.3917 –49.0047 0.1612 –20.5705 –0.0961 39.6404
0001CAP06 126.1 179.64 9.72 3 5 0.3548 –43.9871 0.1272 –15.9994 –0.1677 43.393
0005SDA00 127.2 208.56 –7.44 3 5 0.2687 –33.9557 –0.1063 13.5181 –0.1965 65.2986
0191ERI02 137 260.26 –27.26 3 15 –0.0024 0.5483 0.0019 –0.4129 0.0015 63.9874
0465AXC00 135.8 252.41 41.99 3 3 –0.8 108.6428 –0.1896 26.2828 0.3021 14.5402
0007PER00 137 283.15 38.27 3 15 –0.0406 5.5172 –0.0661 9.335 0.0129 56.9855
0012KCG 142 168 74 3 5 –0.3753 54.7644 0.6381 –93.1013 0.2353 –10.8706
0199ADC01 143.1 180.04 2.33 3 3 –0.0479 6.8369 –0.2221 31.8215 0.2127 –6.7381
AXD 145 142.5 77.47 3 5 0.2082 –30.4049 1.0378 –147.406 0.2001 –7.6101
0026NDA10 144.8 207.24 6.81 3 10 0.0682 –9.7592 0.0382 –5.4769 –0.1244 56.4329
ZDR 155 30.19 83.82 3 5 –0.0627 7.5381 –0.8019 124.0229 –0.2273 56.7222
0523AGC00 155.1 263.11 63.51 3 5 –0.1546 23.9816 –0.0714 11.2097 0.0936 29.3975
0206AUR03 159 292.45 15.57 3 5 0.0855 –13.6587 0.1356 –21.2819 –0.022 68.9463
0552PSO01 159 269.53 –24.3 3 10 –0.1719 29.5186 –0.0368 5.9337 –0.0001 65.5639
0694OMG00 164 307.13 16.76 3 10 0.1819 –29.6546 –0.0895 14.9512 0.1782 29.0183
0337NUE00 167.9 259.26 –20.67 3 15 0.1213 –19.9298 0.2203 –37.1078 0.0517 56.8959
0208SPE02 168 248.97 20.79 3 5 0.0415 –7.0712 –0.2061 34.7059 0.036 58.0022
0215NPI04 176 196.75 3.87 3 15 0.1894 –31.67 –0.0021 0.3102 –0.0687 40.1538
0081SLY00 169 294.7 32.27 3 5 –0.1719 28.9685 0.2176 –35.7013 –0.183 89.7565
0757CCY00 171.64 142.43 51.4 3 5 0.6923 –118.646 1.3672 –235.88 0.0295 9.5829
0221DSX04 188 331.25 –11.32 3 5 0.1299 –23.8991 –0.2572 48.3283 –0.1272 56.3114
0081SLY01 186 278.78 25.99 3 5 0.1003 –18.0282 –0.1652 29.5384 0.1175 43.8318
0281OCT00 193 279.98 61.97 3 3 1.1864 –229.216 0.1633 –31.4408 –0.9496 228.6515
0924SAN00 196.7 214.37 29.45 3 5 –0.0063 1.188 0.1951 –37.9924 –0.0398 24.7732
0825XIE00 196.1 227.54 –27.12 3 5 –0.0183 3.0992 –0.1149 22.0415 –0.1092 75.846
0002STA_SE 202.6 194.82 –4.45 3 5 0.1977 –40.8473 –0.0345 7.0159 –0.0968 48.2632
0333OCU00 202.1 278.86 46.82 3 5 –0.571 115.4577 –0.0059 1.1627 –0.0587 67.3791
0023EGE00 209.7 253.48 4.2 3 10 0.2135 –44.9085 –0.0613 13.3966 –0.0354 75.9489
0022LMI03 209 297.96 25.93 3 5 –0.023 4.7739 0.1067 –22.0377 –0.0724 76.4444
0480TCA_OML 210.5 283.37 13.63 3 15 0.2173 –45.5829 0.2711 –56.9822 0.0046 66.0806
0008ORI00 208.7 246.56 –7.45 3 10 0.2418 –50.662 0.0682 –14.3876 –0.0714 80.5061
0524LUM00 215 284.08 36.9 3 5 –0.0562 11.8263 –0.2106 45.0985 0.0133 57.6923
0526SLD00 221.6 265.65 53.89 3 3 –0.2732 60.7616 –0.51 112.5384 0.3182 –21.5505
0002STA_SF 221.5 190.7 –5 2 5 0.4893 –110.27 –0.0676 15.4866 –0.3282 101.4279
0445KUM00 225 268.21 29.76 3 5 0.011 –2.2506 –0.1798 40.0375 0.0387 56.2142
0338OER_DGE 225 186.62 –18.2 6 25 0.3021 –67.8047 –0.2913 64.4547 –0.1381 59.5427
0018AND01 228.6 163.43 18.81 3 15 0.4525 –103.95 0.583 –131.503 –0.129 47.1005
0512RPU00 223 266 –43.46 3 10 –0.2728 59.1409 0.2348 –53.2242 0.1975 12.7893
0017NTA03 222.7 192.77 2.85 3 20 0.2493 –55.8429 0.0068 –1.9411 –0.125 56.6041
0013LEO00 235.2 271.83 10.22 3 10 0.3128 –74.3409 –0.1568 37.014 0.0475 58.5456
0394ACA00 247 215.81 –40.29 3 10 –0.0376 8.2361 0.3104 –75.8768 0.1184 15.3703
0246AMO00 239 239.65 –19.91 2 5 0.0288 –6.7519 0.0655 –15.7132 –0.1309 93.095
0488NSU00 241.6 244.91 42.93 3 3 –0.4783 115.4909 –0.3742 90.7317 0.5148 –70.0019
0250NOO06 247 203.59 –8.24 3 10 0.3154 –78.0349 –0.0617 15.4998 –0.154 80.7632
0257ORS03 243 190.78 –4.69 3 5 0.1671 –40.4572 0.0213 –5.2689 –0.0716 45.0609
1096NAC00 246.2 285.89 –19.99 3 5 0.0303 –7.8055 0.1777 –44.3511 0.1128 38.8415
0340TPY00 249.4 261.96 –39.09 3 3 –0.2619 65.8754 0.3503 –87.6017 0.3206 –19.856
0336DKD01 252 243.06 61.66 3 5 –0.3642 91.4251 0.0718 –18.1264 0.068 26.7305
0339PSU01 253 258.89 34.52 3 10 –0.1293 33.2236 –0.1445 37.3849 0.1253 29.367
0334DAD00 256.5 266.12 62.96 3 15 –0.3261 83.5243 0.0121 –3.3008 0.0057 39.1135
0016HYD01 259.1 229.92 –16.76 3 20 0.1092 –28.8909 –0.0107 2.9956 –0.07 76.6474
0502DRV00 252.5 286.95 13.84 3 10 0.1498 –37.4094 0.2763 –69.4976 0.0398 58.0096
0529EHY00 260.7 237.33 –14.7 3 20 0.12 –31.1678 0.0405 –10.472 –0.042 72.8472
0255PUV00 254 258.16 –60.51 3 10 –0.3877 94.6079 –0.1294 31.7667 –0.0332 50.1627
0019MON01 261.5 202.13 –14.81 3 15 0.3146 –81.5491 –0.0659 17.0315 –0.173 86.0296
0004GEM00 261.6 207.94 10.4 3 10 0.1016 –26.6594 –0.0462 12.2033 0.1051 6.3179
0335XVI00 256.7 292.67 –4.56 3 15 0.247 –63.8677 –0.0526 13.2224 0.072 49.1877
0497DAB00 263.9 298.47 33.45 3 5 –0.0514 13.8764 0.3223 –85.6914 –0.1539 99.9159
0340TPY01 264 259.58 –33.53 3 5 –0.0569 15.0139 0.3278 –85.9806 0.2346 1.0001
0020COM03 275.9 242.79 20.53 3 30 0.0465 –12.5646 –0.0698 19.2142 –0.0055 64.2899
0015URS01 271 218.48 72.07 3 5 0.0334 –9.1414 0.5758 –155.805 –0.2288 94.9921
0428DSV00 267.41 293.72 14.78 3 30 0.1307 –35.1538 0.1089 –29.3136 0.0201 60.6018
0784KVE00 276 257.77 –60.48 3 5 –0.6225 170.2818 0.1063 –28.3692 0.2457 –24.2441
0319JLE00 282.5 219.77 10.41 3 5 0.3376 –94.8099 0.0608 –17.3523 –0.4394 175.6707
0010QUA00 283.28 276.97 63.58 3 10 0.1717 –48.5025 0.2691 –76.0478 –0.2153 101.4334
0331AHY00 285.5 206.75 –25.99 3 10 0.2751 –79.1128 –0.0453 12.6156 –0.1425 84.0134
0515OLE00 290 207.98 –6.91 3 5 0.2457 –72.0572 –0.2923 83.8488 –0.1049 76.771
0323XCB04 296 306.92 51.36 3 5 0.1063 –31.595 0.1704 –50.7995 –0.0667 65.0871
0341XUM06 298.4 218.3 25.85 3 5 0.4109 –122.504 –0.3088 92.1558 0.1963 –17.6211
0404GUM04 299.7 217.38 74.32 3 5 –0.6969 208.5355 0.1979 –59.1513 0.2712 –51.9283
0429ACB00 309.89 271.81 44.48 3 5 –0.521 160.507 –0.6344 195.3062 0.3573 –52.7269
0110AAN04 312 210.6 –17.67 3 10 0.054 –17.2448 –0.0392 12.517 –0.0408 56.6646
0427FED00 315.1 228.34 76.59 3 5 0.6447 –203.526 –0.0605 18.4312 –0.2357 109.3789
1032FHY00 324.3 161.57 –17.83 3 5 0.3352 –108.279 –0.6002 194.2505 –0.0559 34.306
1166TTR00 331.9 285.23 –44.22 3 5 –0.6675 221.5964 0.2326 –76.9744 –0.0972 88.6073
0915DNO00 333.7 271.99 –24.95 3 5 0.1423 –47.1462 0.0408 –13.5988 –0.0791 93.1613
0571TSB00 344 221.78 36.5 3 5 0.8277 –283.702 0.225 –77.0865 –0.5564 240.642
0346XHE01 350 244.94 70.58 3 5 –0.7215 252.5716 –0.0416 14.8965 0.0511 16.4979
0011EVI06 357.2 186.68 5.39 3 10 0.2417 –86.8488 0.0442 –15.9647 –0.1314 74.294
0893EOP00 358 262.63 6.72 3 10 0.2195 –78.7953 –0.0268 9.5359 –0.0295 81.3416

 

Table 5 provides an overview of the radiant distribution and activity profile.  The radiant density shows the coefficients a and b when the radiant point distribution density corrected for the radiant shift is approximated by an exponential function N = a*rb of the distance r (degrees) from the center.  The columns from Nr < =3 to DR3_20 show the solar longitude at the maximum and the maximum value using five different methods.  The activity of a meteor shower is expressed by an increase or decrease in the number of meteors classified as shower members.  Most of the attributed meteors are within 3 degrees of the estimated position in many meteor showers.  Nr< = 3 indicates the maximum solar longitude and its maximum value for meteors within 3 degrees from the estimated radiant.  In many cases, this is sufficient, but in some cases, there is a bias in the observation itself, so correction is necessary.  In this paper, the correction is made by taking the ratio of the number of meteors within 3 degrees from the center and the number of surrounding meteors.  The items following DR3_6 are based on the ratio of the number of meteors within 3 degrees to the number of surrounding meteors per unit area (square degree).  DR3_6 uses meteors at 3 to 6 degrees from the center, DR3_10 at 6 to 10 degrees, DR3_15 at 10 to 15 degrees, and DR3_20 at 15 to 20 degrees for comparison.  It is necessary to use these values depending on the activity of the surrounding meteor shower.  The values shown in Table 5 are based on a moving average of 3 degrees in solar ecliptic longitude.

Table 5 – Radiant distribution and activity profile.

Code Radiant density Nr< = 3 DR3_6 DR3_10 DR3_15 DR3_20
a b λʘ max λʘ max λʘ max λʘ max λʘ max
BCO 5.66 –0.875 14.5 12 13.5 5.6 14.5 8 15.5 8.5 15.5 5.9
ZCY_0 5.83 –0.746 18.5 20 15.5 2.2 14.5 5.4 12.5 8.5 19.5 9.3
DHE 3.97 –1.137 19.5 23 19.5 8.1 19.5 11.7 19.5 9.4 20.5 5.3
AED 1.96 –1.552 17.5 22 23.5 13.5 21.5 12 18.5 13.3 18.5 12.3
PSR 4.12 –1.112 25.5 27 25.5 5.5 24.5 10 24.5 19.5 24.5 13.5
AVB 14.49 –1.052 17.5 27 23.5 6.5 28.5 9.1 23.5 8.7 28.5 8.4
ZCY_1 6.09 –0.669 32.5 20 29.5 1.5 32.5 4.3 32.5 7.5 32.5 11.2
LYR 122.8 –2.177 32.5 1326 33.5 31.9 32.5 184.7 32.5 214.4 32.5 314.8
HVI 8.93 –1.232 39.5 43 38.5 10.2 39.5 11.5 39.5 15.5 39.5 15.1
ARC 4.52 –1.035 40.5 17 46.5 6 41.5 13.1 41.5 14.2 40.5 12.8
BAQ 4.18 –1.151 43.5 14 42.5 9.3 42.5 9.9 41.5 3.9 50.5 1.2
ETA 148.56 –2.66 44.5 612 45.5 85.8 48.5 400.1 43.5 636.8 45.5 605
GAQ 3.93 –0.773 48.5 18 48.5 6.3 47.5 4.3 47.5 5.1 47.5 6.6
PCY 6.6 –0.68 50.5 14 46.5 4.7 55.5 7.6 54.5 9.2 54.5 6.6
ELY 14.88 –1.36 50.5 142 51.5 15.8 50.5 30.5 50.5 32.8 50.5 50.1
MBC 4.58 –0.945 59.5 12 56.5 7.7 54.5 8.1 53.5 9.3 58.5 7.5
TAH 51.98 –2.375 69.5 1105 70.5 30.6 69.5 439.8 69.5 657.6 68.5 653.9
PAN 3.59 –1.219 71.5 22 72.5 31.5 72.5 10.3 72.5 9.5 71.5 10
JMC 5.48 –1.118 70.5 12 77.5 5.6 75.5 19.5 67.5 28.9 75.5 22.2
ARI 6.15 –1.562 80.9 25 80.3 56.9 81.3 148.9 80.7 316.9 78.1 325.4
JEC 7.86 –1.371 82.5 102 83.5 11.5 81.5 15.9 81.5 12.8 83.5 18
JRC 5.12 –1.067 83.5 46 84.5 6.7 84.5 11.2 84.5 11.6 84.5 15.1
SSG 11.33 –0.851 82.5 20 83.5 5.2 89.5 5.9 89.5 6.2 88.5 9.1
JBO 2.85 –1.132 90.5 18 91.5 9.5 89.5 10.6 89.5 14.2 89.5 11.5
DPI 5.11 –1.22 91.5 26 91.5 14.7 90.5 10.7 90.5 6.2 90.5 9.5
JEO 4.65 –1.259 92.5 20 93.5 12.7 91.5 23.3 92.5 19.4 92.5 10.4
JIP 5.82 –1.257 94.5 63 93.5 15.7 93.5 13.8 93.5 11.7 93.5 10.2
FPE 3.51 –0.919 96.5 21 95.5 4.1 95.5 5.4 95.5 6.1 95.5 6.7
PPS_0 17.26 –1.381 98.5 48 93.5 8.4 94.5 17.7 94.5 18.6 91.5 16.7
NZC 50.43 –1.454 107.5 72 110.5 8.9 110.5 30.3 102.5 34 102.5 34.8
MIC 10.78 –1.296 101.5 29 108.5 12.2 101.5 29.7 102.5 21.2 101.5 14.7
TCS 3.82 –0.909 105.5 14 102.5 3.5 104.5 6.1 104.5 7.3 104.5 2.7
CAN 25.86 –1.141 106.5 64 103.5 9.9 109.5 14.7 98.5 15.5 105.5 14.3
JPE 26.85 –1.355 108.5 80 109.5 16.4 109.5 17.2 109.5 26.3 109.5 25.5
ZCS 23.01 –1.539 113.5 166 113.5 19.3 112.5 24.7 113.5 30.4 113.5 29.6
JXA 7.77 –1.166 116.5 17 111.5 11 110.5 17.7 119.5 14.7 110.5 7.3
XCS 25.3 –1.374 117.5 81 116.5 6.3 118.5 15.7 118.5 21.8 117.5 31.5
PPS_1 8.99 –0.713 115.5 38 122.5 3.3 114.5 5.2 115.5 6.3 114.5 5.9
GDR 16.19 –1.706 125.5 185 125.5 23.3 125.5 40 125.5 46.8 125.5 46.2
CAP 91.85 –2.066 127.5 354 126.5 25.5 125.5 75 127.5 94.5 127.5 122.8
SDA 242.13 –2.408 126.5 996 126.5 32.6 127.5 187.9 126.5 250.2 126.5 357.8
ERI 33.73 –1.184 132.5 53 135.5 11.8 131.5 19.5 131.5 33.3 139.5 29.4
AXC 5.61 –0.907 135.5 41 135.5 7.2 136.5 5.9 135.5 6.7 135.5 5.4
PER 1586.13 –2.298 140.5 6711 140.5 36.3 140.5 561.6 140.5 1102.7 140.5 1169.8
KCG 37.71 –1.22 141.5 105 142.5 5.6 139.5 11.8 140.5 29.5 140.5 36.9
ADC 8.04 –1.193 143.5 138 142.5 9.1 144.5 11.5 144.5 16 142.5 17.6
AXD 11.96 –0.424 146.5 41 147.5 2.7 148.5 3.7 144.5 7 146.5 15.5
NDA 47.32 –1.128 152.5 73 152.5 5.3 140.5 15.3 144.5 12.5 150.5 15
ZDR 8.87 –0.705 153.5 33 156.5 3.2 154.5 5.4 154.5 6 149.5 7.8
AGC 10.92 –0.87 156.5 48 157.5 4.7 155.5 9.4 155.5 8.6 155.5 8.4
AUR 16.35 –1.232 158.5 74 157.5 7.4 159.5 9.5 157.5 8.2 158.5 8.2
PSO 16.01 –0.462 160.5 43 164.5 2.3 160.5 3.4 160.5 7.5 160.5 9.5
OMG 10.22 –1.01 163.5 24 169.5 6 162.5 11.5 164.5 5.7 164.5 6.7
NUE 35.48 –0.625 164.5 46 174.5 2.9 164.5 4.4 166.5 7.2 164.5 9.3
SPE 42.26 –1.514 166.5 235 166.5 21.9 166.5 29.8 166.5 34.1 166.5 37.2
NPI 46.66 –0.577 163.5 51 165.5 3.3 165.5 4.1 167.5 6.5 167.5 13.3
SLY_0 12.96 –1.159 169.5 48 168.5 8.6 169.5 11.6 168.5 10.1 169.5 11.1
CCY 11.23 –1.386 173.5 41 172.5 7.3 171.5 18.3 172.5 23 172.5 19.5
DSX 3.99 –1.399 188.5 13 192.5 36 186.5 134.7 190.5 179.1 188.5 111.7
SLY_1 9.83 –0.606 189.5 37 190.5 3.2 190.5 3.9 185.5 5.3 185.5 4.9
OCT 10.52 –1.411 192.5 223 192.5 14.3 193.5 20.1 192.5 21.9 193.5 20.7
SAN 2.48 –1.147 197.5 14 196.5 3.7 197.5 6.7 196.5 6.3 197.5 4.7
XIE 3.5 –0.982 195.5 11 197.5 10.7 195.5 6.6 195.5 5.5 197.5 5.6
STA_SE 111.61 –1.393 204.5 301 203.5 9.5 200.5 17.5 201.5 41.8 206.5 70.1
OCU 16.46 –1.291 202.5 158 202.5 15.9 202.5 30.6 202.5 32 202.5 21.3
EGE 36.12 –0.97 208.5 61 212.5 6 207.5 6.8 199.5 2.7 212.5 3
LMI 28.61 –1.909 208.5 126 210.5 28.9 210.5 61.4 207.5 53.8 209.5 29.9
TCA 33.21 –0.901 211.5 38 196.5 7.4 208.5 8.1 210.5 7.7 202.5 4.9
ORI 803.97 –2.312 208.5 2436 208.5 43.1 208.5 227.9 208.5 222.8 210.5 331.8
LUM 8.98 –1.106 214.5 45 215.5 9.4 214.5 12.8 214.5 9.8 214.5 6.4
SLD 7.96 –1.06 221.5 77 222.5 6.2 221.5 7.1 221.5 6.9 221.5 9.8
STA_SF 211.97 –1.438 219.5 608 223.5 11.7 217.5 12.6 219.5 55.9 218.5 95.5
KUM 19.35 –1.158 222.5 155 223.5 10.8 223.5 10.8 223.5 11.3 223.5 10.6
OER 38.74 –0.778 217.5 36 246.5 4.7 235.5 11.8 247.5 9.1 247.5 3.2
AND 45.03 –1.313 239.5 103 239.5 20 239.5 41.3 243.5 39.9 240.5 43.5
RPU 5.75 –0.933 222.5 13 218.5 6.7 223.5 7.8 225.5 8.4 227.5 6.7
NTA 405.55 –1.474 222.5 420 229.5 18.9 228.5 10.7 225.5 48.2 224.5 90.9
LEO 155.21 –1.96 236.5 479 235.5 40.5 235.5 110 236.5 98.4 236.5 93
ACA 5.64 –0.976 243.5 17 238.5 4.3 242.5 10.2 239.5 12.8 238.5 12.8
AMO 9.78 –0.851 239.5 58 239.5 5.5 239.5 6.4 239.5 7.2 239.5 8.5
NSU 5.18 –0.903 241.5 29 241.5 4.5 241.5 5.4 241.5 5.3 242.5 4.1
NOO 120.81 –1.509 248.5 257 246.5 18.3 246.5 33.8 247.5 26.2 246.5 20
ORS 32.29 –1.018 247.5 82 246.5 4.4 247.5 2.4 238.5 5.2 247.5 10.8
NAC 4.04 –0.807 246.5 18 245.5 5 247.5 4.9 245.5 6.1 245.5 5.6
TPY_0 5.98 –1.258 249.5 25 249.5 5.7 249.5 8.8 249.5 12.4 249.5 8.8
DKD 24.5 –1.183 250.5 144 251.5 8 251.5 19.4 250.5 33.8 251.5 45.3
PSU 17.84 –0.854 251.5 42 252.5 7.7 251.5 10 251.5 9.8 251.5 8
DAD 25.92 –0.535 243.5 36 243.5 3.2 242.5 6.2 256.5 8.5 257.5 13.3
HYD 200.53 –1.668 254.5 356 250.5 37.9 250.5 56.9 255.5 111.5 255.5 122.1
DRV 11.12 –0.793 253.5 23 252.5 6.3 252.5 4.4 254.5 7.2 258.5 6.7
EHY 42.56 –1.021 263.5 40 271.5 3.1 272.5 2.7 255.5 9.8 256.5 17.5
PUV 14.72 –1.33 259.5 22 249.5 6.3 256.5 18 253.5 33.2 260.5 44.7
MON 85.89 –1.291 258.5 149 258.5 21.3 259.5 30.8 255.5 57.1 258.5 38.3
GEM 1479.18 –2.934 262.5 13471 263.5 73.9 261.5 1139.6 261.5 4129 261.5 2326.3
XVI 16.3 –1.407 261.5 25 255.5 24.5 262.5 20.1 256.5 17.8 257.5 8.3
DAB 5.15 –1.299 263.5 27 261.5 26.2 263.5 14.4 263.5 16.8 263.5 6
TPY_1 5.05 –0.975 265.5 19 263.5 7.6 264.5 5.8 264.5 5.5 264.5 6
COM 198.34 –1.533 264.5 221 270.5 25.4 266.5 38.1 265.5 33.4 267.5 56.2
URS 38.25 –1.834 270.5 590 269.5 24.6 270.5 88.5 269.5 109.7 269.5 119.6
DSV 46.64 –1.133 274.5 33 269.5 11.2 274.5 12.3 273.5 13.5 270.5 19.4
KVE 4.56 –1.053 276.5 19 277.5 4.2 275.5 9.6 274.5 20.4 277.5 16.4
JLE 3.57 –0.985 281.5 13 282.5 13.2 282.5 4.6 280.5 3.4 280.5 3
QUA 156.55 –1.495 283.5 1689 283.5 12.4 283.5 94.2 282.5 271.8 282.5 380.1
AHY 19.69 –1.632 284.5 37 284.5 12.2 287.5 51.7 286.5 44.3 284.5 23.6
OLE 7.75 –1.013 288.5 32 288.5 5.8 288.5 13.4 288.5 9.9 288.5 6.7
XCB 6.36 –1.277 296.5 28 297.5 11.4 296.5 30.9 296.5 17.2 296.5 15.6
XUM 11.72 –1.596 298.5 90 298.5 21.1 298.5 65 298.5 24.6 298.5 22.9
GUM 11.2 –1.292 300.5 72 298.5 12 300.5 16.3 299.5 17.7 299.5 17.8
ACB 12.33 –1.07 307.5 109 308.5 12.3 307.5 10.2 308.5 10.9 308.5 13
AAN 7.28 –1.079 311.5 17 314.5 13.7 313.5 14.2 312.5 5.9 314.5 7.6
FED 3.49 –0.724 315.5 26 315.5 6.7 314.5 7.6 314.5 9.9 314.5 8.6
FHY 3.9 –1.042 324.5 14 325.5 7.7 325.5 6.5 325.5 6.1 326.5 5.8
TTR 2.41 –1.023 331.5 11 335.5 18 333.5 11.3 328.5 6.7 332.5 8.9
DNO 3.1 –0.991 334.5 13 335.5 13.5 338.5 9.5 333.5 7.1 333.5 6.8
TSB 3.46 –0.913 343.5 13 342.5 4.4 344.5 9.1 344.5 6.6 344.5 6.4
XHE 5.02 –0.942 350.5 26 351.5 9.9 351.5 8.7 351.5 8.5 351.5 12.4
EVI 16.98 –0.967 358.5 57 359.5 7.9 358.5 7.5 358.5 13.3 359.5 20.3
EOP 3.22 –0.997 363.5 11 358.5 12 355.5 11.3 356.5 7 356.5 6.5

Table 6 shows an overview of meteor shower activity.  “Meteors per year” shows the number of meteors that fall within 3 degrees of the estimated position of the radiant in each year during the survey period shown in Table 4.  The number of meteors in many meteor showers appears to increase each year because the number of GMN observations increases almost exponentially.  However, it should be noted that 2019 is the year when observations began, so there are large variations, and 2023 uses data up to February, so there are many cases that are displayed as 0.  The next six items are related to the activity profile.  “Profile” is the observation curve that was used as the basis for drawing the estimated profile.  Those using lowercase letters are moving averages every third degree, and those using uppercase letters are moving averages every one degree.  C1 and C2 represent the spread of activity, and C3 represents the maximum sharpness.  λʘ and max are estimated values based on the estimated profile and indicate the maximum solar longitude and maximum value.  The values below the decimal point for the maximum solar ecliptic longitude are obtained from the graph and are for reference only.  This estimated curve is shown in part III, “Radiant point distribution map and activity profile” along with the activity curve shown in the “Profile” column.

Table 6 – Annual changes in the number of shower meteors and indices of the modelled activity profile.

Code Meteors per year Indices of the modelled activity profile
2019 2020 2021 2022 2023 Profile C1 C2 C3 λʘ max
BCO 7 22 43 68 0 dr3_15 10 10 2 13 8
ZCY_0 3 20 39 72 0 dr3_15 5 5 3 16 10
DHE 0 5 16 46 0 DR3_15 45 45 2 19.6 19
AED 3 24 36 58 0 dr3_15 16 16 2 20 15
PSR 1 10 27 26 0 DR3_15 45 45 2 24.7 29
AVB 7 89 101 112 0 dr3_15 15 15 2 25 8
ZCY_1 4 24 40 55 0 dr3_15 8 8 2 31.5 8
LYR 40 599 863 1216 0 DR3_15 35 35 1.5 32.3 402
HVI 15 166 11 10 0 dr3_15 110 110 1.7 39 16
ARC 1 9 26 61 0 dr3_15 10 10 2 39.5 16
BAQ 3 6 26 47 0 dr3_10 18 18 2 44 10.5
ETA 167 482 1302 2425 0 DR3_15 55 55 1.5 44.3 850
GAQ 3 7 46 41 0 dr3_15 4.5 4.5 2 48 5
PCY 3 24 38 90 0 dr3_20 1.5 1.5 1.7 49.5 9.5
ELY 7 41 146 203 0 DR3_20 10 10 2 50.2 85
MBC 5 18 34 33 0 dr3_15 50 50 2 55 10
TAH 0 0 0 1269 0 Nr3 5500 3500 0.45 69.45 12000
PAN 0 4 12 30 0 DR3_15 60 60 2 72 18.6
JMC 1 18 50 53 0 DR3_20 10 10 1.8 72 40
ARI 10 20 46 50 0 DR3_20 10 10 1.8 79.5 350
JEC 5 40 62 43 0 DR3_20 40 40 1.8 82.6 40
JRC 1 14 42 52 0 DR3_20 8 8 2 84 22
SSG 13 59 53 107 0 DR3_20 14 14 2 87 9
JBO 1 3 1 34 0 DR3_15 40 40 3 90.3 75
DPI 1 10 17 49 0 DR3_20 350 350 1.2 91.2 14
JEO 38 14 4 41 0 DR3_15 90 90 1.4 92 26
JIP 2 16 12 67 0 DR3_10 80 80 2 94.1 50
FPE 3 13 4 40 0 DR3_10 180 180 2 95.8 16
PPS_0 21 98 51 216 0 DR3_15 4 4 1.6 98.5 27
NZC 51 259 229 570 0 DR3_20 4 4 1.8 101 40
MIC 11 46 67 156 0 DR3_10 19 19 0.7 101.3 65
TCS 3 4 16 44 0 DR3_10 19 19 1.8 104.6 11
CAN 14 114 168 383 0 DR3_20 9 9 1.4 105 19
JPE 17 110 165 289 0 DR3_15 25 25 1 109.6 45
ZCS 14 92 194 267 0 DR3_20 10 10 1 113.6 45
JXA 6 44 51 75 0 dr3_20 13 13 2 115 8
XCS 17 87 113 251 0 Nr 75 75 1.5 116.3 6.8
PPS_1 3 39 64 109 0 DR3_15 4.5 4.5 1.7 117.5 9.5
GDR 8 135 71 185 0 DR3_20 37 37 1.5 125.5 95
CAP 86 586 455 1110 0 DR3_20 25 35 1.6 126.9 140
SDA 256 1257 1185 3029 0 DR3_20 15 17 1.2 126.9 440
ERI 56 155 224 416 0 DR3_20 3 3 1.8 132.3 36
AXC 6 18 40 68 0 DR3_20 25 25 1.2 135.5 9
PER 1296 6487 11913 16054 0 DR3_20 20 20 2 140.5 1500
KCG 4 9 749 11 0 DR3_20 8 8 1.3 141.5 52
ADC 4 11 11 144 0 DR3_15 110 110 3 143.65 65
AXD 22 83 85 106 0 Nr3 3.4 3.4 1.7 147.2 45
NDA 58 289 278 470 0 DR3_20 3 3 2.2 149 17
ZDR 23 29 68 89 0 Nr3 8 8 1.8 153.2 37
AGC 14 43 63 150 0 DR3_20 8 8 3 155.4 9.3
AUR 31 46 109 147 0 DR3_10 120 120 2 158.4 19
PSO 22 48 143 195 0 DR3_20 4 4 2 160.4 11
OMG 14 33 80 102 0 DR3_10 6 6 2 163.2 11.5
NUE 64 152 241 360 0 DR3_20 2.5 3 2 165.5 11
SPE 93 212 421 259 0 DR3_20 70 70 2 166.9 61
NPI 117 239 357 419 0 DR3_20 2.3 2.3 1.8 167.2 12
SLY_0 12 76 117 84 0 DR3_20 10 10 2 169.5 12
CCY 0 223 6 7 0 DR3_20 14 14 1.8 173.4 25
DSX 5 3 21 40 0 DR3_20 15 15 2 188.5 230
SLY_1 8 26 69 131 0 DR3_10 3.5 3.5 2 191.5 6
OCT 27 9 55 154 0 DR3_20 55 55 3 192.55 65
SAN 2 3 22 6 0 Nr 27 27 1.8 196.8 1.4
XIE 11 12 21 16 0 DR3_6 18 18 1.8 198.2 30
STA_SE 235 519 918 935 0 DR3_15 12.5 12.5 1.7 201.5 48
OCU 38 49 147 127 0 DR3_15 30 30 2 202.5 65
EGE 71 87 199 358 0 DR3_10 4.3 4.3 2 203.7 9
LMI 85 113 160 341 0 DR3_20 12 12 1.5 209.2 40
TCA 59 63 213 283 0 dr3_10 6.5 6.5 1.6 209.5 7.5
ORI 2165 2641 4574 10035 0 DR3_10 37 37 1.3 209.5 320
LUM 13 8 67 109 0 DR3_10 21 21 1.5 214.8 23
SLD 14 16 63 63 0 DR3_20 21 21 1.3 221.5 15
STA_SF 285 190 767 3273 0 DR15_2022 22 22 1.3 222.2 157
KUM 25 70 152 132 0 DR3_20 9 9 1.4 222.8 19.5
OER 100 120 233 372 0 Nr3 8 3 1.8 223 32
AND 53 104 635 255 0 Nr_2021 20 20 2 224.5 23
RPU 11 32 40 47 0 DR3_20 3.7 3.7 2 226.2 7
NTA 1051 1548 3040 3538 0 DR3_20 19 19 1.3 226.5 112
LEO 305 741 1075 1697 0 DR3_10 17 13 0.9 235.4 140
ACA 17 13 35 60 0 dr3_20 4 4 1.5 239.5 12
AMO 26 29 46 85 0 DR3_20 65 65 0.8 239.6 17
NSU 12 16 25 53 0 DR3_6 35 35 1.3 241.7 8.5
NOO 277 310 959 1092 0 DR3_10 5 5 1.4 246.1 40
ORS 64 84 169 369 0 DR3_20 23 23 1.6 246.2 13
NAC 11 4 36 27 0 DR3_20 8 8 1.6 246.5 8
TPY_0 15 6 41 37 0 DR3_20 15 15 2 249.4 11
DKD 99 25 261 114 0 DR3_20 23 23 1.7 251 72
PSU 44 46 173 108 0 DR3_15 12 12 0.9 251.5 13.7
DAD 60 86 267 271 0 dr3_20 2 2 2 253.5 13
HYD 457 628 1832 1636 0 DR3_20 7 7 1.2 255.4 190
DRV 25 31 101 89 0 DR3_15 9 9 1.8 255.6 8
EHY 77 129 280 366 5 DR3_20 14 14 1.4 256.2 22
PUV 10 11 93 144 0 DR3_15 1.8 1.8 2.2 256.5 150
MON 168 304 752 678 0 DR3_20 12 12 1.7 258.1 45
GEM 2375 6746 11150 16924 0 DR3_15 37 37 1.7 261.85 7300
XVI 47 73 121 145 0 dr3_10 21 21 2 262.8 21
DAB 5 14 21 51 0 DR3_10 19 19 2 263.1 18
TPY_1 11 17 31 50 0 DR3_20 8 8 1.8 264.3 7.5
COM 321 730 941 2114 440 DR3_20 12 12 1 267.5 67
URS 87 265 177 353 0 DR3_20 47 47 1.2 270.65 470
DSV 76 127 255 439 86 dr3_20 6 6 1.3 271.5 18
KVE 0 1 25 71 0 DR3_15 11 11 0.9 274.9 36
JLE 0 12 8 23 12 DR3_6 14 14 1.4 281.6 40
QUA 16 543 1239 1089 902 DR3_20 42 42 1.8 283.25 1150
AHY 12 48 83 219 73 dr3_15 6.6 6.6 1.4 283.8 47
OLE 0 8 14 33 19 Nr 23 23 1 288.3 2.2
XCB 0 14 27 38 62 DR3_10 9 9 1.9 294.8 31
XUM 0 26 32 58 155 Nr3 27 27 1.7 298.6 97
GUM 0 30 17 47 151 DR3_20 15 15 1.8 299.8 26
ACB 6 25 19 114 125 DR3_20 45 45 2 307.5 21
AAN 3 22 13 73 58 DR3_20 4.5 4.5 1.7 312.5 7.5
FED 3 9 5 39 18 DR3_15 70 70 1 314.84 58
FHY 0 2 7 5 47 DR3_6 180 180 0.8 325.4 25
TTR 0 0 0 6 28 DR3_20 15 15 0.8 332.1 21
DNO 0 1 2 10 33 DR3_20 20 20 0.8 334.2 13
TSB 2 6 11 36 0 DR3_15 62 62 1 343.7 15
XHE 0 10 23 77 0 DR3_20 10 10 1.6 351.9 16
EVI 3 19 194 124 0 DR3_15 38 38 1 358 15
EOP 0 14 21 23 0 dr3_6 24 24 1.5 358.2 12

 

Table 7 shows the radiant point geocentric velocity, and orbital elements corresponding to the maximum of the meteor shower estimated in Table 6. This table summarizes this paper.  It should be noted that these values are different from the commonly used average value for all observed meteors and are values corresponding to the maximum.

Table 7 – Radiant points and orbital elements at the maximum of the meteor shower.

Code Radiant point Orbital elements
λʘ lλʘ b a d vg e q i w W lP bP a
BCO 13 174.6 30.1 199.6 24.5 26.6 0.945 0.696 22.7 248 13 259.4 -21 12.74
ZCY 16 300.4 59.1 299.2 40.2 43.5 0.867 0.909 74.3 143.4 16 184.6 35.1 6.84
DHE 19.6 231.9 46.5 256.2 23.9 49.3 0.944 0.749 85.1 241.2 19.6 208.4 -60.9 13.44
AED 20 293.1 30.1 307.2 12 60.6 0.949 0.734 121.4 116.8 20 245.9 49.7 14.37
PSR 24.7 211.4 34.7 241.7 14.6 45.1 0.985 0.439 67.9 277.7 24.7 314.4 -66.7 29.15
AVB 25 171.4 11.7 199.6 4.4 19.7 0.725 0.709 7 252.4 25 277.3 -6.7 2.57
ZCY 31.5 299.1 58.1 308.6 42.5 41.8 0.721 0.904 73.7 139.4 31.5 198 38.6 3.25
LYR 32.3 240.8 56.7 272.1 33.3 46.6 0.951 0.919 79.4 214.6 32.3 219.5 -33.9 18.64
HVI 39 166.2 -1.3 202.9 -11 18.4 0.739 0.758 0.7 65.2 219 284.2 0.7 2.91
ARC 39.5 312.7 56.5 323.8 47.3 41.3 0.852 0.834 69.6 128.8 39.5 196.1 46.9 5.66
BAQ 44 279.3 13.3 321.3 -1.2 68.3 0.914 0.929 156.5 146.6 44 255.1 12.7 10.86
ETA 44.3 294 7.6 337.1 -1.4 65.4 0.949 0.564 163.7 95.4 44.3 308.6 16.2 11.06
GAQ 48 262.5 33.3 304.1 14.5 62 0.911 0.984 122.8 198.8 48 217.5 -15.7 11
PCY 49.5 278.1 71.5 296.6 53.4 39.4 0.93 1.007 65.4 173.8 49.5 226.9 5.7 14.42
ELY 50.2 256.3 64.5 290.7 43.7 44 0.955 1 74.4 191.6 50.2 233.4 -11.1 21.99
MBC 55 245.8 4.8 302 -15.3 65.7 0.932 0.565 169.7 265.1 55 150 -10.3 8.29
TAH 69.45 125.3 36.9 208.9 28 11.4 0.641 0.991 10.5 199.5 69.5 268.7 -3.5 2.76
PAN 72 307.1 43.6 355.3 46.6 50.4 0.963 0.713 89.6 113.3 72 251 66.7 19.54
JMC 72 323.5 43.6 10.7 53.2 42.7 0.912 0.6 69.5 98.3 72 184.6 68 6.85
ARI 79.5 330.6 7.8 45.3 25.2 40.8 0.97 0.071 30.1 27.3 79.5 103.6 13.3 2.37
JEC 82.6 249.2 47.9 315.3 33.7 52.7 0.949 0.921 95.5 216 82.6 258.6 -35.8 18.02
JRC 84 262.2 55.4 320.7 44.5 49.7 0.938 1.007 88.2 190.6 84 264.3 -10.6 16.16
SSG 87 186.7 -6.5 274.2 -29.9 25.2 0.777 0.462 6.2 104.3 267 11.4 6 2.07
JBO 90.3 101.2 59.4 221.1 48.5 14 0.68 1.015 18.4 184.7 90.3 274.8 -1.5 3.17
DPI 91.2 280.4 1 10.2 5.5 69.8 0.962 0.919 178.1 143.5 91.2 307.7 1.1 24.12
JEO 92 152.7 13.1 245.1 -8.2 13.7 0.659 0.889 5 226.8 92 318.7 -3.7 2.61
JIP 94.1 252.4 37.8 331.7 29.3 58.5 0.955 0.898 112.4 220.4 94.1 256.1 -36.8 20.17
FPE 95.8 254.9 15.9 345.2 11 66.7 0.936 0.843 150.7 229.6 95.8 230.1 -21.9 13.17
PPS_0 98.5 282.9 16.1 13.3 23.2 66.3 0.876 0.879 150.8 135.2 98.5 319.4 20.1 7.06
NZC 101 209.5 12.4 309.6 -5.6 38.9 0.942 0.11 38.3 327 101 74 -19.7 1.9
MIC 101.3 208.8 -10.3 315.7 -27.6 40 0.958 0.094 34.9 148.7 281.3 74.8 17.3 2.24
TCS 104.6 303.6 52.7 13.7 65.4 46.3 0.893 0.858 80.9 131.9 104.6 274.6 47.3 8.03
CAN 105 298.1 32.8 27 46.5 57.1 0.918 0.684 112.9 108.5 105 334.4 60.9 8.35
JPE 109.6 244.6 14.6 348.8 11.1 63.8 0.949 0.574 148.6 263.9 109.6 206.7 -31.2 11.34
ZCS 113.6 277.9 42.7 7.5 50.8 57.1 0.934 0.996 107.6 163.5 113.6 298.7 15.7 15.02
JXA 115 283.2 -5.5 37.7 9 68.8 0.937 0.865 169.9 313.7 295 340.8 -7.3 13.73
XCS 116.3 185.1 8.4 301.8 -11.7 25.1 0.791 0.486 7.7 280.5 116.3 36.9 -7.5 2.32
PPS_1 117.5 280.5 17.7 29.1 30.8 66.1 0.842 0.926 148.3 143.8 117.5 329.4 18.1 5.86
GDR 125.5 167.3 73.4 280.1 50.7 27.6 0.978 0.978 40.4 202.1 125.5 322.7 -14.1 44.39
CAP 126.9 178.6 9.9 305.4 -9.3 22.1 0.759 0.599 7.2 267.1 126.9 33.9 -7.2 2.49
SDA 126.9 208.4 -7.4 340 -16.4 40.4 0.968 0.079 26.8 151.1 306.9 100.7 12.6 2.47
ERI 132.3 260 -27.4 39.5 -13.5 64.2 0.942 0.951 132.2 29.4 312.3 291.6 21.4 16.31
AXC 135.5 252.1 42.6 3.8 49.1 55.5 0.914 0.909 104.2 218.5 135.5 304.5 -37.1 10.56
PER 140.5 283.4 38.3 49.2 58.1 58.8 0.923 0.945 113 149.4 140.5 333.5 27.9 12.3
KCG 141.5 162.9 71.1 286.4 49.6 22.4 0.724 0.971 33.9 205.8 141.5 343.3 -14 3.51
ADC 143.6 180.1 2.2 325.3 -11.5 23.8 0.81 0.552 1.8 270.9 143.7 54.6 -1.8 2.91
AXD 147.2 140.6 82.8 274.3 59.7 21.8 0.654 1.006 34.8 189.4 147.2 334.9 -5.3 2.91
NDA 149 206.8 7 353.4 4.8 37.9 0.95 0.105 20.4 327.2 149 117.9 -10.9 2.09
ZDR 153.2 52.7 84.6 258.9 63.8 21.9 0.647 1.01 35 176.7 153.2 330.5 1.9 2.86
AGC 155.4 263.2 63.6 358 76.6 43.9 0.892 1.005 75.6 188.1 155.4 337.4 -7.8 9.28
AUR 158.4 292.6 15.8 91.2 39.2 65.5 0.961 0.667 148.2 108 158.4 47.5 30.1 16.93
PSO 160.4 267.4 -24.3 69.8 -2.4 65.5 0.874 1.002 138.3 9.5 340.4 333.3 6.3 7.96
OMG 163.2 307.1 17.1 115.2 38.8 58.1 0.948 0.3 130.8 63.7 163.2 110.3 42.7 5.72
NUE 165.5 259.1 -21.3 66.4 0.1 65.4 0.866 0.912 141.9 37.3 345.5 314.6 22 6.78
SPE 166.9 249.1 21.1 47.4 39.6 64 0.944 0.718 138.7 245.9 166.9 287.6 -37.1 12.76
NPI 167.2 196.7 3.8 2.1 5.1 28.7 0.83 0.287 5.1 305.2 167.2 112.5 -4.2 1.68
SLY_0 169.5 294.9 33.5 111.7 55.8 58.7 0.928 0.752 114.6 118.4 169.5 27.1 53.1 10.47
CCY 173.4 140.1 52.6 300.2 33.6 14.7 0.651 0.958 18.3 208.4 173.4 20.6 -8.6 2.74
DSX 188.5 330.6 -11.5 156.5 -2.5 32.3 0.869 0.147 24.3 213.4 8.5 219.5 -13.1 1.12
SLY_1 191.5 277.5 23.9 115.2 45.7 66.3 0.919 0.966 138.5 158.4 191.5 28 14.1 11.97
OCT 192.6 281.6 62 167.6 78.6 45.8 0.946 0.991 77.9 169.1 192.6 10.2 10.7 18.44
SAN 196.8 214.4 29.8 37.9 46.5 16.9 0.516 0.396 21.4 320.5 196.8 159.3 -13.4 0.82
XIE 198.2 228.1 -27.8 69.1 -6.1 54.2 0.981 0.383 103 104.1 18.2 240 70.9 19.75
STA_SE 201.5 195.8 -4.4 36.4 9.8 28.8 0.831 0.301 5.7 122.6 21.5 144.2 4.8 1.78
OCU 202.5 279.1 46.8 145.7 64.2 55.5 0.942 0.979 100.7 164.2 202.5 25.5 15.5 16.87
EGE 203.7 254.9 5.1 99.7 28.3 68.7 0.917 0.789 170.4 235.7 203.7 328.4 -7.9 9.52
LMI 209.2 298 26.2 160.3 36.8 61.3 0.959 0.616 124.5 102.8 209.2 97.3 53.4 15.15
TCA 209.5 283.4 13.4 139.7 29.8 67 0.808 0.843 155.1 131.2 209.5 75.5 18.5 4.39
ORI 209.5 246.6 -7.5 96.3 15.8 65.5 0.916 0.557 163.8 85.4 29.5 304.3 16.1 6.65
LUM 214.8 284.4 36.8 158.2 49.2 60.5 0.952 0.915 115.1 146.9 214.8 50.3 29.6 18.91
SLD 221.5 265.2 53.5 161.6 68 48.9 0.741 0.986 88.5 189.8 221.5 41.8 -9.8 3.81
STA_SF 222.2 192.3 -4.5 53.2 14.5 28.5 0.837 0.351 5.4 114.7 42.2 157 4.9 2.16
KUM 222.8 268 29.7 144.4 45.8 64.8 0.933 0.988 129.2 186.9 222.8 38.4 -5.3 14.81
OER 223 187.1 -18.7 52.6 -0.3 28.7 0.874 0.472 19.1 97.1 43 140.5 18.9 3.74
AND 224.5 165.9 18.2 21.2 28.5 18.1 0.751 0.763 9.4 242.4 224.5 106.6 -8.3 3.06
RPU 226.2 269.6 -43.5 125.1 -25.5 57.5 0.902 0.99 106.3 2.2 46.2 45.6 2.1 10.14
NTA 226.5 192.1 2.4 55.8 22.2 28.3 0.833 0.352 2.9 294.7 226.5 161.2 -2.6 2.11
LEO 235.4 272.5 10.3 153.9 21.8 69.7 0.829 0.984 162 171.6 235.4 63.4 2.6 5.74
ACA 239.5 216.8 -41.8 95 -18.5 43.7 0.917 0.553 70 85.4 59.5 136.3 69.5 6.69
AMO 239.6 239.5 -19.9 117.2 0.8 61.7 0.963 0.469 133.3 94 59.6 323.7 46.5 12.74
NSU 241.7 245.1 43.2 148.9 59.4 54.4 0.925 0.813 98.9 230.8 241.7 51 -49.9 10.88
NOO 246.1 204 -7.9 90.1 15.5 42.9 0.992 0.111 24.6 141.4 66.1 210.2 15 13.22
ORS 246.2 190.1 -4.7 75.6 18 27.4 0.82 0.392 5.1 109.7 66.2 175.9 4.8 2.18
NAC 246.5 286.2 -20.5 165 -16 66.6 0.934 0.812 141.8 309.3 66.5 110.3 -28.6 12.31
TPY_0 249.4 261.2 -39.3 138.3 -25.5 60.1 0.951 0.955 112.5 20.7 69.4 61.2 19.1 19.52
DKD 251 243 61.5 186.1 70.5 43.8 0.91 0.929 73.2 208.6 251 79.9 -27.3 10.28
PSU 251.5 258 35.6 168.1 44.2 60.9 0.896 0.917 117.2 211.4 251.5 55.9 -27.6 8.78
DAD 253.5 264.2 62.7 204.6 62.2 40.6 0.604 0.981 72 188.5 253.5 76.1 -8.1 2.48
HYD 255.4 231 -16.5 124.7 2.7 58.8 0.982 0.255 129.1 119.7 75.4 303.2 42.4 14.27
DRV 255.6 286 15 187.5 13.1 68.2 0.935 0.795 152 126.8 255.6 125.3 22.1 12.16
EHY 256.2 237.8 -14.8 132.2 2.4 62.1 0.964 0.375 142.3 105.1 76.2 327.3 36.2 10.31
PUV 256.5 268.3 -61.6 134.7 -49.2 41.6 0.612 0.984 74.1 3.2 76.5 77.4 3 2.53
MON 258.1 202.5 -14.8 100.4 8.3 41.4 0.983 0.185 35.3 129.8 78.1 213.6 26.4 10.71
GEM 261.8 208 10.5 113.3 32.4 33.8 0.889 0.146 22.9 324.1 261.9 228.1 -13.2 1.31
XVI 262.8 291.6 -5.2 191.3 -10.5 68.1 0.95 0.624 169.4 284.4 82.8 158.2 -10.3 12.45
DAB 263.1 298.1 32.6 212.1 21.9 59.4 0.972 0.675 113.5 111.2 263.1 128.9 58.7 24.18
TPY_1 264.3 259.6 -32.9 152 -23.9 63 0.936 0.929 122.5 27.9 84.3 68.4 23.2 14.46
COM 267.5 242.9 21.1 161 30.9 62.8 0.943 0.557 134.2 263.9 267.5 6.2 -45.5 9.77
URS 270.6 218.8 72.1 219.4 75.4 33.1 0.814 0.94 52.8 205.6 270.7 106.8 -20.2 5.06
DSV 271.5 293.4 15 208.5 4.4 66.1 0.95 0.612 148.8 103 271.5 166.4 30.3 12.23
KVE 274.9 259.4 -59.6 142.3 -50.5 43.3 0.657 0.969 76.8 15.4 94.9 98.5 15 2.82
JLE 281.6 219.5 10.2 147 24.1 51.9 0.991 0.049 103.6 335.3 281.6 287.8 -23.9 5.67
QUA 283.2 276.7 63.8 230 49.7 40.4 0.64 0.98 70.9 172 283.3 100.6 7.5 2.72
AHY 283.8 207.9 -26.2 127.1 -8 43.6 0.969 0.285 58.1 116.2 103.8 236.8 49.6 9.28
OLE 288.3 209.2 -7.3 137.7 8.6 46.5 0.995 0.052 37.4 154 108.3 267.1 15.4 10.11
XCB 294.8 307.3 50.8 250.2 29.3 45.4 0.826 0.775 78.1 122 294.8 96.5 56 4.45
XUM 298.6 218.1 25.8 169.5 32.8 41 0.853 0.221 67.2 313.2 298.6 276.2 -42.2 1.5
GUM 299.8 218.8 74.5 229.7 67.3 29.4 0.654 0.954 48.2 202.7 299.8 135.4 -16.7 2.75
ACB 307.5 271.4 44.7 231.3 27.9 57.2 0.918 0.984 104.5 176.5 307.5 128.4 3.4 11.97
AAN 312.5 211 -17.4 158.1 -9.6 43.9 0.957 0.138 56.6 139.3 132.5 287.2 33 3.19
Code Radiant point Orbital elements
λʘ lλʘ b a d vg e q i w W lP bP a
FED 314.8 230.6 76 239.3 61.8 35.2 0.947 0.97 55.3 194.6 314.8 143.2 -11.9 18.28
FHY 325.4 160.7 -18.9 123.9 0.4 16.1 0.693 0.823 8.4 53.6 145.4 198.7 6.8 2.68
TTR 332.1 285.4 -43.9 247 -66.4 56.3 0.939 0.916 103 328 152.1 160.1 -31.1 14.94
DNO 334.2 271.5 -24.9 237.8 -45.7 66.7 0.918 0.987 137.3 354.2 154.2 158.5 -4 11.99
TSB 343.7 220.8 36.7 216.7 24.6 49.4 0.987 0.497 82 270.2 343.7 255.1 -82 37.88
XHE 351.9 249 70.8 255.9 48.8 34.5 0.629 0.982 59.3 194.1 351.9 179.2 -12.1 2.65
EVI 358 187 5.3 186.7 2.8 27.2 0.818 0.439 5.4 284 358 282 -5.2 2.42
EOP 358.2 262.8 6.7 260.7 -16.5 70.8 0.937 0.954 168.4 204 358.2 154.6 -4.7 15.23

 

Figure 9 – Radiats observed in GMN with λʘ = 250~260 expressed in (λ–λʘ, β) coordinate system, point distribution. The center is (λ–λʘ, β) = (270, 0).

 

4  Comparison with the previous meteor shower table

Many of those that appeared for the first time had weak activity, so it was not possible to clearly capture their activity in the previous paper.  Also, some meteor showers in the southern sky are now included.  On the other hand, those not covered in this article include 0027KSE, 0152NOC, 0183PAU, 0388CTA, 0097SCC, and 0096NCC.  In the case of KSE, this is because KSE03, which was the previous origin, has been deleted from the IAUMDCSD.  For more information, please refer to part II. “Meteor showers that require attention”.  The other four activities did not meet the criteria when applied this time.  We also explained SCC and NCC in detail in part II.

The survey method is the same as in the previous paper, but the only difference is that to determine whether a meteor belongs to a meteor shower, we exclude meteors that are more than ±3 km/s away from the regression line of the geocentric velocity.  This is because many meteor showers appear not so frequently as sporadic meteors, so it is necessary to exclude those that may be sporadic meteors.  This difference does not have a large effect on the meteor showers discussed in the previous article.  The major difference between the previous paper and this paper is in the database used, so we will explain the differences between the SonotaCo net data and GMN.  There are four points.

The first is the difference in the number of meteors.  The number of GMN meteors used here was more than twice that of the previous one, and as a result, even weaker meteor showers were detected.  However, the number of GMN observations is increasing exponentially, and care must be taken when considering annual changes in meteor showers.  Also, it must be noted that this often depends on observations in 2022, and observation conditions in 2022 have a large influence.

The second difference is the observation period.  In the previous paper, we used SonotaCo net observations from 2007 to 2018, but the GMN observations used in this paper are from 2019 to February 2023.  As a result, we were unable to discuss the activity of the Orionids, which became active from 2007 to 2009, but on the other hand, we obtained data on the outbursts of the Andromedids in 2021 and the 73P/Schwassmann-Wachmann 3 comet-related event in 2022.

The third difference is that the observation points are spread out in longitude.  Observations were mainly made in Western Europe and North America, but we were able to obtain continuous observations for almost half a day, making it possible to capture meteor showers whose peaks last for only a short period.  This is also why GMN captures the outbursts mentioned above.  However, since the number of observation points differs depending on the longitude, it is natural that an increase or decrease in the number of meteors does not necessarily indicate a change in the activity of the meteor shower, so care must be taken.

Finally, GMN includes observations of the southern sky.  Although the number of observations is still small, it is now possible to capture activity in the southern sky, as shown in Figure 9.  In this paper, we were able to investigate meteor showers with declinations south of –40 degrees, such as 0255PUV00, 0784KVE00, 1166TTR00, and 0915DNO00.  It is expected that future developments will lead to the discovery of new meteor showers and provide useful knowledge about meteor showers, which had previously been discussed only through visual observation.

Acknowledgment

This paper would not have been possible without the dedicated efforts of the observers, and the author would like to express his heartfelt gratitude to the members of SonotaCo net and GMN.

References

Koseki M. (2021). “The activity of meteor showers recorded by SonotaCo Net video observations 2007–2018”. eMetN, 6, 91–246.

Southworth R. B. and Hawkins G. S. (1963). “Statistics of meteor streams”. Smithsonian Contributions to Astrophysics, 7, 261–285.

Vida D., Gural P., Brown P., Campbell–Brown M., Wiegert P. (2019). “Estimating trajectories of meteors: an observational Monte Carlo approach – I. Theory”. Monthly Notices of the Royal Astronomical Society, 491, 2688–2705.

Vida D., Gural P., Brown P., Campbell–Brown M., Wiegert P. (2020). “Estimating trajectories of meteors: an observational Monte Carlo approach – II. Results”. Monthly Notices of the Royal Astronomical Society, 491, 3996–4011.

Vida D., Šegon D., Gural P. S., Brown P. G., McIntyre M. J. M., Dijkema T. J., Pavletić L., Kukić P., Mazur M. J., Eschman P., Roggemans P., Merlak A., Zubrović D. (2021). “The Global Meteor Network – Methodology and first results”. Monthly Notices of the Royal Astronomical Society, 506, 5046–5074.