Roberto Gorelli points our attention at a recently published meteor related paper:

Effect of ice sheet thickness on formation of the Hiawatha impact crater

This article has been submitted for publication by Elizabeth A. Silber, Brandon C. Johnson, Evan Bjonnes, Joseph A. MacGregor, Nicolaj K. Larsen, Sean E. Wiggins.

 

Abstract: The discovery of a large putative impact crater buried beneath Hiawatha Glacier along the margin of the northwestern Greenland Ice Sheet has reinvigorated interest into the nature of large impacts into thick ice masses. This circular structure is relatively shallow and exhibits a small central uplift, whereas a peak-ring morphology is expected. This  discrepancy may be due to long-term and ongoing subglacial erosion but may also be explained by a relatively recent impact through the Greenland Ice Sheet, which is expected to alter the final crater morphology. Here we model crater formation using hydrocode simulations, varying pre-impact ice thickness and impactor composition over crystalline target rock. We find that an ice-sheet thickness of 1.5 or 2 km results in a crater morphology that is consistent with the present morphology of this structure. Further, an ice sheet that thick substantially inhibits ejection of rocky material, which might explain the absence of rocky ejecta in most existing Greenland deep ice cores if the impact occurred during the late Pleistocene. From the present morphology of the putative Hiawatha impact crater alone, we cannot distinguish between an older crater formed by a pre-Pleistocene impact into ice-free bedrock or a younger, Pleistocene impact into locally thick ice, but based on our modeling we conclude that latter scenario is possible.

You can download this paper for free: https://arxiv.org/ftp/arxiv/papers/2104/2104.07909.pdf (29 pages).

 

Older meteor library news:

2021

  • Determination of strewn fields for meteorite falls, by Jarmo Moilanen, Maria Gritsevich and Esko Lyytinen. (1 March 2021).
  • Observation of the α Carinid meteor shower 2020 unexpected outburst, by Juan Sebastian Bruzzone, Robert J. Weryk, Diego Janches, Carsten Baumann, Gunter Stober, and Jose Luis Hormaechea. (25 February 2021).
  • Fireball characteristics derivable from acoustic data, by Luke McFadden, Peter Brown, Denis Vida and Pavel Spurný. (15 February 2021).
  • Detection of a bolide in Jupiter’s atmosphere with Juno UVS, by Rohini S. Giles, Thomas K. Greathouse, Joshua A. Kammer, G. Randall, Gladstone, Bertrand Bonfond, Vincent Hue, Denis C. Grodent, Jean-Claude Gérard, Maarten H. Versteeg, Scott J. Bolton, John E. P. Connerney and Steven M. Levin. (8 February 2021).
  • The Sariçiçek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of Vestoids, by Ozan Unsalan, Peter Jenniskens, Qing-Zhu Yin, Ersin Kaygisiz, Jim Albers, David L. Clark, Mikael Granvik, Iskender Demirkol, Ibrahim Y. Erdogan, Aydin S. Bengu, Mehmet E. Özel, Zahide Terzioglu, Nayeob Gi, Peter Brown, Esref Yalcinkaya, Tuğba Temel, Dinesh K. Prabhu, Darrel K. Robertson, Mark Boslough, Daniel R. Ostrowski, Jamie Kimberley, Selman Er, Douglas J. Rowlands, Kathryn L. Bryson, Cisem Altunayarunsalan, Bogdan Ranguelov, Alexander Karamanov, Dragomir Tatchev, Özlem Kocahan, Michael I. Oshtrakh, Alevtina A. Maksimova, Maxim S. Karabanalov, Kenneth L. Verosub, Emily Levin, Ibrahim Uysal, Viktor Hoffmann, Takahiro Hiroi, Vishnu Reddy, Gulce O. Ildiz, Olcay Bolukbasi, Michael E. Zolensky, Rupert Hochleitner, Melanie Kaliwoda, Sinan Öngen, Rui Fausto, Bernardo A. Nogueira, Andrey V. Chukin, Daniela Karashanova, Vladimir A. Semionkin, Mehmet Yesiltas, Timothy Glotch, Ayberk Yilmaz, Jon M. Friedrich, Matthew E. Sanborn, Magdalena Huyskens, Karen Ziegler, Curtis D. Williams, Maria Schönbächler, Kerstin Bauer, Matthias M. M. Meier, Colin Maden, Henner Busemann, Kees C. Welten, Marc W. Caffee, Matthias Laubenstein, Qin Zhou, Qiu-Li LI, XianHua LI, Yu Liu, Guo-Qiang Tang, Derek W. G. Sears, Hannah L. Mclain, Jason P. Dworkin, Jamie E. Elsila, Daniel P. Glavin, Philippe Schmitt-Kopplin, Alexander Ruf, Lucille Le Corre, & Nico Schmedemann. (6 February 2021).
  • Relationship between Radar Cross Section and Optical Magnitude based on Radar and Optical Simultaneous Observations of Faint Meteors, by Ryou Ohsawa, Akira Hirota, Kohei Morita, Shinsuke Abe, Daniel Kastinen, Johan Kero, Csilla Szasz, Yasunori Fujiwara, Takuji Nakamura, Koji Nishimura, Shigeyuki Sako, Jun-ichi Watanabe, Tsutomu Aoki, Noriaki Arima, Ko Arimatsu, Mamoru Doi, Makoto Ichiki, Shiro Ikeda, Yoshifusa Ita, Toshihiro Kasuga, Naoto Kobayashi, Mitsuru Kokubo, Masahiro Konishi, Hiroyuki Maehara, Takashi Miyata, Yuki Mori, Mikio Morii, Tomoki Morokuma, Kentaro Motohara, Yoshikazu Nakada, Shin-ichiro Okumura, Yuki Sarugaku, Mikiya Sato, Toshikazu Shigeyama, Takao Soyano, Hidenori Takahashi, Masaomi Tanaka, Ken’ichi Tarusawa, Nozomu Tominaga, Seitaro Urakawa, Fumihiko Usui, Takuya Yamashita, Makoto Yoshikawa. (6 February 2021).
  • Ejby—A new H5/6 ordinary chondrite fall in Copenhagen, Denmark, by by H. Haack, A. N. Sørensen, A. Bischoff, M. Patzek, J.-A. Barrat, S. Midtskogen, E. Stempels, M. Laubenstein, R. Greenwood, P. Schmittkopplin, H. Busemann, C. Maden, K. Bauer, P. Morina, M. Schönbächler, P. Voss and T. Dahl-Jensen. (2 February 2021).
  • The Great Chinese Fireball of December 22, 2020, by Albino Carbognani. (7 January 2021).
  • Trajectory and orbit of the unique carbonaceous meteorite Flensburg, by Jiří Borovička, Felix Bettonvil, Gerd Baumgarten, Jörg Strunk, Mike Hankey, Pavel Spurný, and Dieter Heinlein. (7 January 2021).
  • Remarks on generating realistic synthetic meteoroid orbits, by T. J. Jopek. (6 January 2021).

2020

2019

2018

2017